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The Nahm Equation or D1-D3-Branes
In type IIB string theory, monopoles can be seen as D1-branes ending on D3-branes.

Consider a D3-brane in directions 0234.
A BPS solution to the SYM equations is
the magnetic monopole with Higgs field
φ ∼ 1

r : A D1-brane appears.
As they are BPS, one trivially forms a
stack of N D1-branes.
From the perspective of the D1-brane,
the effective dynamics is described by
the Nahm equations:

d
dφ
Xi + εijk[Xj , Xk] = 0 .

dim 0 1 2 3 4
D1 × ×
D3 × × × ×

These equations have the following solution (“fuzzy funnel”)

Xi = r(φ)Gi , r(φ) =
1
φ
, Gi = εijk[Gj , Gk]
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The Nahm Equation and The Fuzzy Funnel
In type IIB string theory, monopoles can be seen as D1-branes ending on D3-branes.

Xi = r(φ)Gi , r(φ) =
1
φ
, Gi = εijk[Gj , Gk]

Interpretation of this solution:
The N ×N -matrices Gi form a
representation of SU(2) and satisfy
tr (GiGi) ∼ N , thus they are
coordinates on a fuzzy S2.
At every point φ, the cross section of
the D1s’ worldvolume is a fuzzy sphere
with radius r(φ). In the limit N →∞,
a smooth S2 appears.
dofs: R ∼ N , dofs ∼ R2 ∼ N2 X

dim 0 1 2 3 4
D1 × ×
D3 × × × ×
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The Basu-Harvey Equation or M2-M5-Branes
M2 branes ending on M5 branes should be described by Nahm-type equations.

M5-brane in directions 013456:

Gmn∇m∇nX
a′ = 0

Gmn∇mHnpq = 0

Ansatz for a soliton:

X5′ = φ

H01m = vm Hmnp = εmnpqv
q

Solution:
H01m ∼ ∂mφ φ ∼ 1

r2

dim 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×

Perspective of M2: postulate four scalar fields Xi, satisfying
d
dφ
Xi + εijkl[Xj , Xk, X l] = 0

Basu, Harvey, hep-th/0412310
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The Basu-Harvey Equation or M2-M5-Branes
M2 branes ending on M5 branes should be described by Nahm-type equations.

Basu-Harvey equation:

d
dφ
Xi + εijkl[Xj , Xk, X l] = 0

Solution (similar to D1-D3 case):

Xi = r(φ)Gi r(φ) =
1√
φ

Gi = εijkl[Gj , Gk, Gl]

Interprete this again as a fuzzy
funnel, this time with a fuzzy S3

at every point φ (not quite...).
R ∼

√
N dofs ∼ R3 ∼ N3/2 X

dim 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×
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Metric 3-Lie Algebras
3-Lie algebras come with a triple bracket and an induced Lie algebra structure.

metric 3-Lie algebras (Filippov, 1985)

A a real vector space with a bracket [·, ·, ·] : Λ3A → A satisfying

[A,B,[C,D,E]] =
[[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]] (FI)

and a bilinear symmetric map (·, ·)A : A⊗A → R satisfying

([A,B,C], D)A + (C, [A,B,D])A = 0 (Cmp)

There is a map from A ∧A to Der(A) given by linearly extending

DA∧B(C) := [A,B,C] , A,B,C ∈ A

The inner derivations gA := im(DA∧A) form a Lie algebra.
Two invariant pairings on gA: (A ∧B,C ∧D)g := ([A,B,C], D)A

and induced Killing form.
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The Metric 3-Lie Algebra A4
The 3-Lie algebra A4 is the most important 3-Lie algebra in the context of BLG.

Consider the vector space A4 := R4 with basis τ1, ..., τ4. Then
define the bracket [·, ·, ·] : Λ3A4 → A4 as the linear extension of

[τa, τb, τc] =
∑

d

εabcdτd .

Also, the bilinear symmetric map (·, ·)A4 : A4 ⊗A4 → R is given
as the linear extension of

(τa, τb)A4 = δab .

Ass. Lie alg. gA4 := im(DA4∧A4) = A4 ∧A4 generated by τa ∧ τb,
which satisfy the commutator relations for so(4) ∼= su(2)× su(2).

The bilinear symmetric map on gA4 has nonvanishing entries:

(τ1 ∧ τ2, τ3 ∧ τ4) = (τ1 ∧ τ3, τ4 ∧ τ2) = (τ1 ∧ τ4, τ2 ∧ τ3) = 1
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Approaching the Effective Description of M2-Branes
Spacetime symmetries and BPS equations give helpful constraints on the description.

A stack of flat M2-branes in R1,10 should be effectively described
by a conformal field theory with the following constraints:

Spacetime symmetries: SO(1, 10) → SO(1, 2)× SO(8)
extended by N = 8 SUSY.

Field content: XI , I = 1, ..., 8, and superpartners Ψα

Assumption

Take BPS/SUSY transformations from Basu-Harvey equation and
therefore the matter fields take values in a metric 3-Lie algebra.

δX = iΓI ε̄ΓIΨ δΨ = ∂µXΓµε− 1
6 [X,X,X]ε

Recipe: Try to close SUSY algebra. Constraints yield equations of
motion for matter fields.
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The Bagger-Lambert-Gustavsson Model
This model is an unconventional supersymmetric Chern-Simons matter theory.

BLG found that for SUSY, we need to introduce gauge symmetry.
⇒ Field content: X ∈ A, Ψ ∈ A and gauge potential Aµ ∈ gA.

Simplify: Clifford alg. Cl(R1,10), X := ΓIX
I , {ΓI ,ΓJ} = 2ηIJ

(A,B)A⊗Cl := 1
32 tr Cl

(
(A,B)A

)
, [·, ·, ·] linearly ext.

The Bagger-Lambert-Gustavsson model

LBLG = + 1
2ε

µνκ
(
(Aµ, ∂νAκ)g + 1

3(Aµ, [Aν , Aκ])g

)
− 1

2(∇µX,∇µX)A⊗Cl + i
2(Ψ̄,Γµ∇µΨ)A

+ i
4(Ψ̄, [X,X,Ψ])A − 1

12([X,X,X], [X,X,X])A⊗Cl

This model is invariant under the supersymmetry transformations:

δX = iΓI ε̄ΓIΨ , δΨ = ∇µXΓµε− 1
6 [X,X,X]ε ,

δAµ = iε̄Γµ(X ∧Ψ)
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Consistency checks
The BLG model passes a number of consistency checks.

LBLG = + 1
2ε

µνκ
(
(Aµ, ∂νAκ)g + 1

3(Aµ, [Aν , Aκ])g

)
− 1

2(∇µX,∇µX)A⊗Cl + i
2(Ψ̄,Γµ∇µΨ)A

+ i
4(Ψ̄, [X,X,Ψ])A − 1

12([X,X,X], [X,X,X])A⊗Cl

Further results:
The model is classically conformal and seems rather unique.
The model is parity invariant.
Under some assumptions: reduction mechanism M2→D2.

(Mukhi, Papageorgakis,0803.3218)

Recast into the ABJM version, it yields integrable spin chain.
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Manifestly N = 2 SUSY Formulation
There is a manifestly N = 2 SUSY formulation, allowing for various deformations.

Approach: Take N = 1, 4d superspace R1,3|4 and reduce to 3d.

Field content of the theory:

• The matter fields XI , Ψ are encoded in four chiral multiplets:

Φi(y) = φi(y) +
√

2θψi(y) + θ2F i(y) ,

• The gauge potential Aµ is contained in a vector superfield:

V (x) = − θαθ̄α̇(σµ
αα̇Aµ(x) + iεαα̇σ(x))

+ iθ2(θ̄λ̄(x))− iθ̄2(θλ(x)) + 1
2θ

2θ̄2D(x) ,

N = 2 superspace formulation of BLG (Cherkis, CS, 0807.0808)

L =
∫

d4θ κ
(
i(V, (D̄αD

αV ))g + 2
3(V, {(D̄αV ), (DαV )})g

)
+ (Φ̄i, e2iV · Φi)A + α

( ∫
d2θ εijkl([Φi,Φj ,Φk],Φl)A + c.c.

)
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Manifestly N = 2 SUSY Formulation
There is a manifestly N = 2 SUSY formulation, allowing for various deformations.

L =
∫

d4θ κ
(
i(V, (D̄αD

αV ))g + 2
3(V, {(D̄αV ), (DαV )})g

)
+ (Φ̄i, e2iV · Φi)A + α

( ∫
d2θ εijkl([Φi,Φj ,Φk],Φl)A + c.c.

)
Observations:

Superfield description of BLG analogous to that of SYM.
This Lagrangian is not manifestly gauge invariant.
There are various N = 2 deformations.
Deforming by a Yang-Mills term breaks conformal invariance,
but might lead to new dualities.
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Manifestly N = 4 Supersymmetric Formulation
Projective superspace provides a way of making manifest N = 4 SUSY in 3d.

Projective superspace in 4d

N = 2 SUSY covariant derivatives on R1,3|8:
{Diα, Djβ} = 0 {D̄i

α̇, D
j

β̇
} = 0 {Diα, D̄

j
α̇} = −2iδj

i σ
µ
αα̇∂µ

add ζ ∈ U0 ⊂ CP 1 parameterizing N = 1 within N = 2:

∇ζ = D1 + ζD2 , ∇̄ζ = −ζD̄1 + D̄2

Projective superspace: R1,3|8 ×CP 1 “divided by” ∇ζ , ∇̄ζ .

Perform again a dimensional reduction:

R
1,3|8 ×CP 1 → R

1,2|8 ×CP 1.

Field content of the BLG model:
• Matter XI , Ψ: N = 1 4 chiral multiplt., N = 2 2 hypermultiplt.

ηk = Φ̄ 1
ζ2 + Σ̄1

ζ +X − ζΣ + ζ2Φ
• Gauge Aµ: N = 1 vector multiplet, N = 2 tropical multiplet

V(ζ, ζ̄) =
∑∞

n=−∞ vnζ
n
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Manifestly N = 4 Supersymmetric Formulation
In projective superspace, one can make N = 4 SUSY in the BLG model manifest.

Field content: tropical multiplet V and hypermultiplets ηk.

Supersymmetric action: (Cherkis, Dotsenko, CS, 0812.3127)∫
µ κ

(
i(V, (D̄αDαV))g+2

3(V, {(D̄αV), (DαV)})g

)
+

(
η̄k, e2iV · ηk

)
A

Observations:
Chern-Simons term completely reduces to N = 1 form.
The complex linear superfield Σ in the hypermultiplet

ηk = Φ̄ 1
ζ2 + Σ̄1

ζ +X − ζΣ + ζ2Φ
can be dualized to a chiral multiplet.
To compute the interaction terms, one would have to solve a
Riemann-Hilbert problem. However, its symmetries tell us
that this is the BLG model.
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Extending The Structure of A 3-Lie Algebra
The notion of a 3-Lie algebra is too restrictive and one has to find a generalized notion.

Problem: Given a three-algebra A, if its bilinear form (·, ·)A is
positive definite, then A is A4 or a direct sum thereof.

A4 supposedly describes a stack of 2 M2-branes, not enough.

Mukhi, Papageorgakis, 0803.3218

Possible extensions:
(1) Assume, 3-Lie algebras appear accidentally ⇒ ABJM model
(2) Give up positive definiteness of (·, ·)A ⇒ ghosts
(3) Relax conditions on 3-Lie algebras

Guideline: Demand gauge invariance of the N = 2 Lagrangian

L =
∫

d4θ κ
(
i(V, (D̄αD

αV ))g + 2
3(V, {(D̄αV ), (DαV )})g

)
+ (Φ̄i, e2iV · Φi)A + α

( ∫
d2θ εijkl([Φi,Φj ,Φk],Φl)A + c.c.

)
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Admissible 3-Algebraic Structures
Imposing gauge invariance in the N = 2 BLG-like model leads to more freedom.

Demanding gauge invariance in above theory yields the condition:

([A,B,C], D)A = −([B,A,C], D)A
= −([A,B,D], C)A = ([C,D,A], B)A

Cherkis, CS, 0807.0808
Generalized metric 3-Lie algebras

A a real vector space with map [·, ·, ·] : A×A×A → A satisfying

[A,B,[C,D,E]] =
[[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]] (FI)

and
([A,B,C], D)A = −([B,A,C], D)A = ([C,D,A], B)A (Sym)

and a bilinear symmetric map (·, ·)A : A⊗A → R satisfying

([A,B,C], D)A + (C, [A,B,D])A = 0 (Cmp)
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A Class of Examples for Generalized Metric 3-Lie Algebras
The family C2d provides examples for generalized metric 3-Lie algebras.

Because of the fundamental identity FI, we still have an associated
Lie algebra gA := im(DA∧A) acting on A by linearly extending

DA∧B(C) := [A,B,C] , A,B,C ∈ A

Examples for generalized metric 3-Lie algebras:
Clifford algebra Cl(R2d, δab) generated by γa, {γa, γb} = 2δab.
Define: C2d as the vector space spanned by the γI = γ[a1...ai],
endowed with:

[γI , γJ , γK ] := [[γI , γJ ]γch, γK ] , (γI , γJ)A = tr (γ†IγJ)

Note that C4 = A4 ⊕A4, as in this case:

[γa, γb, γc] = [[γa, γb]γ5, γc] ∼
∑

d

εabcdγd
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Hermitian 3-Lie Algebras
Another generalization of 3-Lie algebras are the Hermitian ones yielding N = 6 SUSY.

Alternatively to our way of extending 3-Lie algebras:
Reduce supersymmetry to N = 6, i.e. assume the following:

δφi =
√

2ε̄ijψ̄j ,

δψ̄i = −i
√

2σµεij∇µφ
j + [φj , φk; φ̄j ]εik + [φj , φk; φ̄i]εjk ,

δAµ = −iεijσµφ
i ∧ ψj + iε̄ijσµφ̄i ∧ ψ̄j .

where εij is in the 6 of SU(4). Closure of this algebra implies:
[A, B; C] = −[B, A; C] ([A, B; C], D) = (B, [C, D; A]) .

[[C, D; E], A; B]− [[C, A; B], D; E]−[C, [D, A; B]; E] + [C, D; [E, B; A]] = 0 .

An associated Lie algebra gA := im(DA∧A) is induced by

DA∧B(C) := [C,A;B] , A,B,C ∈ A

This leads to the ABJM model, a Chern-Simons-matter theory.

Aharony, Bergman, Jafferis, Maldacena, 0806.1218
Bagger, Lambert, 0807.0163

Christian Sämann Generalized Berezin Quantization



Equivalence to Gauge Theories
The above generalizations of 3-Lie algebras can be recast into Lie algebra language.

Recall the BLG Lagrangian:

LBLG = + 1
2ε

µνκ
(
(Aµ, ∂νAκ)g + 1

3(Aµ, [Aν , Aκ])g

)
− 1

2(∇µX,∇µX)A⊗Cl + i
2(Ψ̄,Γµ∇µΨ)A

+ i
4(Ψ̄, [X,X,Ψ])A − 1

12([X,X,X], [X,X,X])A⊗Cl

Up to potential terms, this is an ordinary gauge theory.
What is the relationship between Lie algebras and 3-Lie algebras?
(Medeiros, Figueroa-O’Farrill, Mendez-Escobar, Ritter, 0809.1086)

Unifying picture:

Generalized 3-Lie algebras ↔ (g, V ) g: real Lie algebra
V : faithful orthogonal g-mod.

similar statement for Hermitian 3-Lie algebras.
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Current Situation:
It is not clear, if 3-Lie algebras are necessary at all.

Observations:
3-Lie algebras too restrictive, only one example: A4.
Generalizations lead to less than N = 8 supersymmetry.
All models can be rewritten as gauge theories.

⇒ We need more input from physics.

Particularly important here: AdS/CFT correspondence

We need some kind of N →∞ limit, so let’s look at represen-
tations of (generalized) 3-Lie algebras in terms of matrix algebras.
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Classifications of ∗-Algebra Representations of 3-Algebras
Representations on matrix algebras, which are useful for N →∞, can be constructed.

Representation of metric 3-algebras on ∗-algebras:
Take a ∗- or matrix algebra equipped with a trace form. Construct
a 3-bracket on this algebra from matrix products and the involution
and use the Hilbert-Schmidt scalar product (A,B) = tr (A†B).

Classification of all such representations in the real and hermitian
case using MuPad done in Cherkis, Dotsenko, CS, 0812.3127
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Classifications of ∗-Algebra Representations of 3-Algebras
Representations on matrix algebras, which are useful for N →∞, can be constructed.

The Real case. [A,B,C] :=

I : α([[A∗, B], C] + [[A,B∗], C] + [[A,B], C∗]− [[A∗, B∗], C∗])
II : α([[A,B∗], C] + [[A∗, B], C])

III : α(AB∗ −BA∗)C + βC(A∗B −B∗A)
IV : α([[A,B], C] + [[A∗, B∗], C] + [[A∗, B], C∗] + [[A,B∗], C∗])

+ β([[A,B], C∗] + [[A∗, B], C] + [[A,B∗], C] + [[A∗, B∗], C∗]) .

The class of examples C2d,

[γa, γb, γc] := [[γa, γb]γch, γc] ,

is contained in III, with α = β = −1 and the ∗-algebra is the
algebra of d× d matrices.
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Classifications of ∗-Algebra Representations of 3-Algebras
Representations on matrix algebras, which are useful for N →∞, can be constructed.

The Hermitian case. [A,B,C] :=

Iα : A,B,C 7→ α(AC†B −BC†A) .

This is precisely the Hermitian 3-Lie algebra used in Bagger,
Lambert, 0807.0163 to obtain the ABJM model in 3-algebra form.
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BLG-like Models with Generalized 3-Algebras
The manifestly supersymmetric actions from above can be used with any such 3-algebra.

Recall the N = 2 superfield formulation of the BLG model:

L =
∫

d4θ κ
(
i(V, (D̄αD

αV ))g + 2
3(V, {(D̄αV ), (DαV )})g

)
+ (Φ̄i, e2iV · Φi)A + α

( ∫
d2θ εijkl([Φi,Φj ,Φk],Φl)A + c.c.

)
as well as the N = 4 superfield formulation:∫
µ κ

(
i(V, (D̄αDαV))g + 2

3(V, {(D̄αV), (DαV)})g

)
+

(
η̄k, e2iV · ηk

)
A

In both cases, A can also be a generalized or a Hermitian 3-Lie alg.
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L∞-algebras and Homotopy Maurer-Cartan Equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

L∞- or strong homotopy Lie algebras

• Introduced by Stasheff (1992) “only way to extend Lie algebras”
• appear in string FT, top. conf. FT, Morse theory
Definition:
R-module L, with family of R-multilinear maps µn : L×n → L s.t.:

µn(xσ(1) . . . xσ(n)) = ε(σ)µn(x1 . . . xn)

Homotopy Jacobi-type identity:
nX

i=1

X
σ∈Sh(i,n−i)

(−1)i(n+1)ε(σ)µn−i+1(µi(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(n)) = 0

There is also a graded version, then µn is of degree 2− n.
Note: µ1 is a differential, µ1, µ2 6= 0 → diff. (grad.) Lie algebra

Interestingly, n-Lie algebras are (ungraded) L∞-algebras
(Hanlon, Wachs 1995, Dzhumadil’daev, math/0202043)
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L∞-algebras and Homotopy Maurer-Cartan Equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

Equations employing L∞ algebras:

homotopy Maurer-Cartan equation

Given a (graded) L∞-algebra L = ⊕iLi,∑
`≥0

(−1)`(`+1)/2

`!
µ`(ϕ⊗`) = 0 , ϕ ∈ L

is invariant under the gauge transformations

δϕ = −
∑
`≥1

(−1)`(`−1)/2

(`− 1)!
µ`(α⊗ ϕ`−1) , α ∈ L0

Andrei Losev: “All classical equations of motion are of hMC form.”

If only µ1, µ2 6= 0, then hMC are ordinary Maurer-Cartan eqs.

The following examples are all developed in
C. I. Lazaroiu, D. McNamee, CS and A. Zejak, 0901.3905
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The Nahm Equation as hMC Equations
Both the Nahm and the Basu-Harvey equations can trivially be put into hMC form.

Example (1): The Nahm equation

∇sX
i + εijk[Xj , Xk] = 0

with gauge algebra su(N). Using X = σiX
i, rewrite as

dAX + [X,X]ds = 0

Vector space for the L∞-algebra: L := Ω•(R, Cl(R3))⊗ su(N)
Grading arises from d̃s = 1, σ̃i = 1
Higher products reproducing the Nahm equation:

µ1(X) := dX , µ2(A,X) := [A,X] , µ2(X,X) := [X,X]ds

Higher products taking care of gauge transformations:

µ1(λ) := dλ , µ2(λ,A) := [λ,A] , µ2(λ,X) := [λ,X]

This reproduces both the eom and gauge symmetry correctly.
Christian Sämann Generalized Berezin Quantization



The Nahm Equation as hMC, Higher Jacobi Identities
Most of the higher Jacobi identities are automatically satisfied.

Homtopy Jacobi identity:
nX

i=1

X
σ∈Sh(i,n−i)

(−1)i(n+1)ε(σ)µn−i+1(µi(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(n)) = 0

Higher products responsible for equations of motion:

µ1(X) := dX , µ2(A,X) := [A,X] , µ2(X,X) := [X,X]ds

These satisfy the higher Jacobi identities trivially:
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The Nahm Equation as hMC, Higher Jacobi Identities
Most of the higher Jacobi identities are automatically satisfied.

All higher products:

µ1(X) := dX , µ2(A,X) := [A,X] , µ2(X,X) := [X,X]ds

µ1(λ) := dλ , µ2(λ,A) := [λ,A] , µ2(λ,X) := [λ,X]

The hom. Jacobi identities define the following higher products:

µ1(µ2(λ,X)) & µ2(µ1(λ), X) ⇒ µ2(λ, µ1(X))
µ2(µ2(λ,A), X) & µ2(µ1(λ,X), A) ⇒ µ2(λ, µ2(A,X))

µ2(µ2(λ,X), X) ⇒ µ2(λ, µ2(X,X))
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The Basu-Harvey Equation as hMC Equations
Both the Nahm and the Basu-Harvey equations can trivially be put into hMC form.

Example (2): The Basu-Harvey equation

∇sX
i + εijkl[Xj , Xk, X l] = 0

with 3-Lie algebra A and associated gauge algebra gA. Rewrite:

dAX + γ5[X,X,X]ds = 0 , X := γiX
i

Vector space for the L∞-algebra: L := Ω•(R, Cl(R4))⊗ (A⊕ gA)
Grading arises from d̃s = 1, γ̃i = 1 Higher products:

µ1(X) := dX µ2(A,X) := [A,X] µ3(X,X) := γ5[X,X,X]ds

Higher products taking care of gauge transformations:

µ1(λ) := dλ µ2(λ,A) := [λ,A] µ2(λ,X) := [λ,X]

Higher Jacobi identities require us to define further products. This
reproduces eom and gauge symmetry correctly.
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The Super Yang-Mills Equations as hMC Equations
Because of their second-order nature, the hMC form of the SYM equations is more subtle.

Example (3): The (bosonic part of the) super Yang-Mills eqns:

∇µF
µν = [Xi,∇νXi] ∇µ∇µXi = [[Xi, Xj ], Xj ]

gauge algebra A = su(N).
New: differential operators of second order. Rewrite X := Xiγi:

∗dA ∗ dAAγch = tr Cl([X,dAX])γch (∆AX)ω = γch[X, γch[X,X]]ω

Vector space for the L∞-algebra: L := Ω•(R1,p)⊗ Cl(R9−p)⊗A
Grading arises from d̃xµ = 1, γ̃i = 1 Higher products, 1st eq.:

µ1(A) := − (∗d ∗ dA) γ µ2(A, A) := (∗[A, ∗dA] + ∗d ∗ [A, A]) γ ,

µ3(A, A, A) := (∗[A, ∗[A, A]]) γ µ2(X, X) := tr C([X, dX]) γ

µ3(X, A, X) := tr C ([X, [A, X]]) γ .

Higher products, 2nd eq.:
µ1(X) = −∆X ω µ3(X, X, X) = −6 (γ[X, γ[X, X]]) ω

µ2(A, X) = − ([Aµ, ∂µX]ω + ∂µ[Aµ, X]) ω µ3(A, A, X) = [Aµ, [Aµ, X]] ω ,

Gauge sym., higher Jacobi identities, SUSY ⇒ higher products.
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The BLG Equations as hMC Equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

Example (4): The (bosonic part of the) BLG eqns:
∇µ∇µX + 1

2Γ[X,X,Γ[X,X,X]] = 0
[∇µ,∇ν ] + εµνκ( tr Cl(X ∧ (∇κX))) = 0

Start with 3-Lie algebra A and introduce the module
L := Ω•(R3)⊗C Cl8 ⊗ (A⊕ gA)

define gradings:
deg(Ω0(R3)⊗C Cl8,0 ⊗ gA) = 0

deg(Ω1(R3)⊗C Cl8,0 ⊗ gA) = deg(Ω0(R3)⊗C Cl8,1 ⊗A) = 1

deg(Ω2(R3)⊗C Cl8,0 ⊗ gA) = deg(Ω3(R3)⊗C Cl8,1 ⊗A) = 2

The fields will live in the following subspaces:
A ∈ Ω1(R3)⊗ Cl8,0 ⊗ gA X ∈ Ω0(R3)⊗ Cl8,1 ⊗A
λ ∈ Ω0(R3)⊗ Cl8,0 ⊗ gA
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The BLG Equations as hMC Equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

BLG equations of motion (bosonic part):
∇µ∇µX + 1

2Γ[X,X,Γ[X,X,X]] = 0
[∇µ,∇ν ] + εµνκ( tr Cl(X ∧ (∇κX))) = 0

Define the following brackets:

µ1(A) := dA µ2(A, A) := [[A ∧A]] ,

µ2(X, X) := ∗τ(X ∧ dX) µ3(A, X, X) := ∗τ(X ∧ [A, X])

µ1(X) := ∆Xω µ2(A, X) := ∂µ[Aµ, X]ω + [Aµ, ∂µX]ω

µ3(A, A, X) := [Aµ, [Aµ, X] ]ω µ5(X
⊗5) := Γ[X, X, Γ[X, X, X]]

further brackets consistently from gauge symmetry, super-
symmetry and homotopy Jacobi identities.

The hMC equations
∑

`≥0
(−1)`(`+1)/2

`! µ`(ϕ⊗`) = 0 reproduce the
BLG model together with its gauge invariance. (SUSY extension)
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Conclusions
Summary and Outlook.

Past work:
Identification of extended 3-algebraic structures
Classification of categorical matrix representations
Manifestly N = 2 and N = 4 supersymmetric formulations of
BLG-like models
Identification of L∞-algebra structure
BLG eoms rewritten as homotopy Maurer-Cartan equations

Future directions:
Are L∞-algebras useful here? Extendable? Classifications?
Which 3-algebras yield Hamiltonians of integrable spin chains?
Extend SUSY models by Yang-Mills term, analyze
Lift the Nahm/Fourier-Mukai transform to M-theory
Ultimately: find analogous models for M5 branes
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