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Problem

One of the big challenges in M-theory is the formulation of the
so-called N = (2,0) theory. This a chiral superconformal
gauge theory in six dimensions with maximal N = (2,0)
supersymmetry.

At the linearised level, we have:
a potential 2-form B with curvature 3-form H = dB such
that H = ?6H,

five scalars φIJ such that �φIJ = 0, and

four Weyl fermions ψI such that DψI = 0.

Problem: How can this be promoted to an interacting
non-Ablian theory?
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Proposal: Combine twistor theory and categorified principal
bundles.
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Twistor Basics

The central objects are double fibrations of the form

P M

F
π1 π2�
�	

@
@R

where M, F and P are complex manifolds:
M space-time
F correspondence space
P twistor space

Then we have a correspondence between P and M, i.e.
between points in one space and subspaces of the other:

π1(π−1
2 (x)) ↪→ P ↔ x ∈ M
p ∈ P ↔ π2(π−1

1 (p)) ↪→ M
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Twistor Correspondence: P π1← F π2→ M

Using this correspondence, we can transfer data given on
P to data on M and vice versa (e.g. vector bundles, sheaf
cohomology groups, contact forms, ...).

Take some analytic object ObP on P and transform it to an
object ObM on M; this in turn is constrained by some PDEs
as π∗1ObP has to be constant up the fibres of π1 : F → P.

Under suitable topological conditions, the maps

ObP 7→ ObM and ObM 7→ ObP

define a bijection between [ObP ] and [ObM ] (the objects in
question will only be defined up to equivalence).
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Example: Penrose Transform

Consider 4d flat space M = C4 with TM ∼= S ⊗ S̃:

�
�

�
�π1(π−1

2 (x)) = P1
x ↪→

P = P3 \P1 M = C4

←↩
�
�

�
�C2

p = π2(π−1
1 (p))

F = P(S̃∨) = C4 ×P1

π1 π2�
�	

@
@R

Then,

H1(P,OP(−2h − 2)) ∼=
{

zero-rest-mass fields
of helicity h on M

}
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Example: Penrose–Ward Transform

Consider again M = C4 with TM ∼= S ⊗ S̃:

�
�

�
�π1(π−1

2 (x)) = P1
x ↪→

P = P3 \P1 M = C4

←↩
�
�

�
�C2

p = π2(π−1
1 (p))

F = P(S̃∨) = C4 ×P1

π1 π2�
�	

@
@R

We have a natural bijection between equivalence classes of

holomorphic M-trivial principal G-bundles over P and

solutions to F = ?4F on M with F = dA + 1
2 [A,A] and

A ∈ Ω1 ⊗ g.
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Chiral Fields In 6d And Their Twistorial Interpretation

1111.2539 (JMP) with C Sämann
see also 1111.2585 (JGP) by Mason, Reid-Edwards & Taghavi-Chabert
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Setup

Consider M = C6 with TM ∼= S ∧ S, where S is the bundle
of anti-chiral spinors.

Then choose coordinates xAB = −xBA with ∂AB = −∂BA,
where A,B, . . . = 1, . . . ,4 and the metric is 1

2εABCD.

Null-momentum pAB is given by

1
2pABpCDε

ABCD = pABpAB = 0

so that

pAB = kAakBbε
ab , pAB = k̃Aȧk̃Bḃεȧḃ ,

where a, ȧ, . . . are SL(2,C)× ˜SL(2,C) little group indices.
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Chiral Fields

Interested in fields that transform trivially under ˜SL(2,C)→
chiral fields with (2h + 1,1) and h ∈ 1

2N0 which we call spin

The N = (2,0) tensor multiplet consists of a self-dual
3-form H = dB in the (3,1) representation, four Weyl
fermions ψI in the (2,1) and five scalars φIJ in the (1,1):

∂ACHCB = ∂ACψC = �φ = 0 ,

where{
H = dB

H = ∗H

}
↔

{
(HAB,HAB) = (∂C(ABB)

C , ∂C(ABC
B))

HAB = 0

}
The corresponding plane waves are

HAB ab = kA(akBb) ei x ·p , ψAa = kAa ei x ·p , φ = ei x ·p .
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Twistor Space For Chiral Fields

Starting from space-time M with coordinates xAB, define
the correspondence space F to be F := P(S∨) ∼= C6 ×P3

with coordinates (xAB, λA).

Introduce a distribution 〈V A〉 ↪→ TF by V A := λB∂
AB which

is integrable. Hence, we have foliation P := F/〈V A〉.

One can show that

P ∼= T∨P3 ⊗O
P3(2) ↪→ O

P3(1)⊗C4 ∼= P
7 \P3

so we may use coordinates (zA, λA) with zAλA = 0 and
thus

P M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xAB, λA) 7→ (zA, λA) = (xABλB, λA).
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Twistor Space For Chiral Fields

P M

F
π1 π2�
�	

@
@R

Because of zA = xABλB we have a geometric correspondence:

π1(π−1
2 (x)) ∼= P3

x ↪→ P ↔ x ∈ M
p ∈ P ↔ π2(π−1

1 (p)) ∼= C3
z ↪→ M

where
C

3
p : xAB = xAB

0 + εABCDµCλD

which is a totally null 3-plane.
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Penrose Transform: H3

Then for h ∈ 1
2N0

H3(P,OP(−2h − 4)) ∼=
{

chiral zero-rest-mass fields
of spin h on M

}

This can be interpreted as a contour integral

ψA1···A2h (x) =

∮
γ

Ω(3,0) λA1 · · ·λA2h f−2h−4(x · λ, λ) ,

where γ is topologically a 3-torus and

Ω(3,0) := 1
4!ε

ABCDλA dλB ∧ dλC ∧ dλD .

What about h < 0?
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Penrose–Ward Transform: H2

For h ∈ −1
2N, the cohomology group H3(P,OP(−2h − 4))

yields trivial space-time fields.

In fact, what replaces this cohomology group is another
cohomology group. One can show that for h ∈ 1

2N0

H2(P,OP(2h − 2)) ∼=
{

zero-rest-mass fields
of helicity h on M

}
by means of a Penrose–Ward transform.

Note that in the case of interest for the self-dual 3-forms,
we have h = 1 and thus H2(P,OP), which in turn is
isomorphic to H2(P,O∗P). Hence, holomorphic bundle
1-gerbes on twistor space correspond to self-dual 3-form
fields on space-time.
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Twistor Action

The fact that we have H2 and H3 to describe chiral
zero-rest-mass fields allows us to write down a twistor
space action principle for these fields.

Define holomorphic volume form on P

Ω(6,0) :=

∮
γ

Ω(4,0)(z) ∧ Ω(3,0)(λ)

zAλA
,

where Ω(4,0)(z) := 1
4!εABCD dzA ∧ dzB ∧ dzC ∧ dzD and

Ω(3,0)(λ) := 1
4!ε

ABCDλA dλB ∧ dλC ∧ dλD.

Then,

S =

∫
Ω(6,0) ∧ B(0,2)

2h−2 ∧ ∂̄C(0,3)
−2h−4 .
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Non-Abelian Extensions And Supersymmetry

1205.3108 (CMP) with C Sämann
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Principal Bundles—A Recap

Let M =
⋃

a Ua be a manifold and G a Lie group. A
principal G-bundle over M with connection is described by
a G-valued Deligne 1-cocycle ({gab}, {Aa}) with

gabgbc = gac , Ab = g−1
ab Aagab + g−1

ab dgab .

Two Deligne 1-cocycles ({gab}, {Aa}) and ({g̃ab}, {Ãa})
are said to be cohomologous whenever

gag̃ab = gabgb , Ãa = g−1
a Aaga + g−1

a dga .

One associates a curvature 2-form Fa := dAa + 1
2 [Aa,Aa]

with
Fb = g−1

ab Fagab , F̃a = g−1
a Faga .
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Question: How can one generalise this to incorporate gauge
potentials of higher form-degree?
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Lie Crossed Modules

Let (G,H) a pair of Lie groups together with an
automorphism action Bof G on H and a group
homomorphism ∂ : H → G such that

∂(g Bh) = g∂(h)g−1 , ∂(h1) Bh2 = h1h2h−1
1

called the equivariance and Peiffer conditions. This is
known as a Lie crossed module.

A canonical example is the automorphism Lie 2-group
(G ∂→ Aut(G),B) where ∂ is the embedding via conjugation
and B is the identity. For what follows we need other
examples that will be hopefully found at this workshop.
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Strict Principal 2-Bundles

Let M =
⋃

a Ua be a manifold. A strict principal 2-bundle with
connective structure is described by a (G,H)-valued Deligne
2-cocycle ({gab}, {habc}, {Aa}, {Ba}, {Λab}) with

t(habc)gabgbc = gac ,

hacdhabc = habd (gab Bhbcd ) ,

Ab = g−1
ab Aagab + g−1

ab dgab − ∂(Λab) ,

Bb = g−1
ab BBa −∇bΛab − 1

2∂(Λab) BΛab ,

Λac = Λbc + g−1
bc BΛab − g−1

ac B(habc∇ah−1
abc) .
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Strict Principal 2-Bundles

Two Deligne 2-cocycles ({gab}, {habc}, {Aa}, {Ba}, {Λab}) and
({g̃ab}, {h̃abc}, {Ãa}, {B̃a}, {Λ̃ab}) are said to be cohomologous
whenever

gag̃ab = ∂(hab)gabgb ,

hachabc = (ga B h̃abc)hab(gab Bhbc) ,

Ãa = g−1
a Aaga + g−1

a dga − ∂(Λa) ,

B̃a = g−1
a BBa − ∇̃aΛa − 1

2∂(Λa) BΛa ,

Λ̃ab = g−1
b BΛab + Λb − g̃−1

ab BΛa − (g−1
b g−1

ab ) B(h−1
ab ∇bhab)
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Principal 2-Bundles

The associated curvature 2- and 3-forms are

Fa := dAa + 1
2 [Aa,Aa] ,

Ha := dBa + Aa BBa

with

Fb = g−1
ab Fagab − ∂(∇bΛab + 1

2∂(Λab) BΛab) ,

Hb = g−1
ab BHa − (Fb − ∂(Bb)) BΛab ,

and

F̃a = g−1
a Faga − ∂(∇̃aΛa + 1

2∂(Λa) BΛa) ,

H̃a = g−1
a BHa − (F̃a − ∂(B̃a)) BΛa .

Thus, provided Fa = ∂(Ba), the 3-form curvature
transforms covariantly. This is called the fake curvature
constraint.
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Non-Abelian Self-Dual Tensor Field Equations

Let us consider the following set of non-Abelian self-dual
tensor equations

H = dB+A BB , H = ?6H , F = dA+1
2 [A,A] = ∂(B)

on space-time M ∼= C6. In spinor notation, this reads as

HAB = ∇C(ABC
B) = 0 , FA

B = ∂(BA
B)

Can we use twistor theory to derive these equations
including the just-mentioned gauge transformations from
algebraic data on twistor space?
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Penrose–Ward Transform: P π1← F π2→ M

Theorem: There is a bijection between equivalence classes
(i) of holomorphic M-trivial strict principal 2-bundles on P,

(ii) of holomorphically trivial strict principal 2-bundles on F
equipped with a flat relative connective structure, and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M.

Remark: The proof uses H1(F ,Ω1
π1

) = 0 and Riemann–Hilbert
problems; the non-uniquess of RH problems is the origin of the
gauge transformations on space-time. In a more high-brow
terminology, the Penrose–Ward transform is simply a change of
the Deligne cohomology representatives of the involved
2-bundles by means of coboundary transformations.
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Question: What about supersymmetry?
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Supertwistor Space

Consider N = (n,0) superspace M = C6|8n with
coordinates (xAB, ηA

I ) with I, J, . . . = 1, . . . ,2n. The
derivatives

PAB :=
∂

∂xAB , DI
A :=

∂

∂ηA
I
− 2ΩIJηB

J
∂

∂xAB

obey
{DI

A,D
J
B} = −4ΩIJPAB .

Define the correspondence space F to be F := C4|8n ×P3

with coordinates (xAB, ηA
I , λA).

Introduce a rank-3|6n distribution 〈V A,V I AB〉 ↪→ TF by
V A := λB∂

AB and V I AB = 1
2ε

ABCDλCDI
D which is integrable.

Hence, we have foliation P := F/〈V A,V I AB〉.
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Supertwistor Space

On P, we may use coordinates (zA, ηI , λA) with
zAλA = ΩIJηIηJ and thus

P M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xAB, ηA
I , λA) 7→ (zA, ηI , λA) =

= ((xAB + ΩIJηA
I η

B
J )λB, η

A
I λA, λA)

A point x ∈ M corresponds to a complex projective
3-space in P, while a point p ∈ P corresponds to a
3|6n-superplane with

xAB = xAB
0 + εABCDµCλD + 2ΩIJεCDE [AλCθIDEη0

B]
J ,

ηA
I = η0

A
I + εABCDλBθICD .
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Penrose–Ward Transform: P π1← F π2→ M

Theorem: There is a bijection between equivalence classes
(i) of holomorphic M-trivial strict principal 2-bundles on P and

(ii) of solutions to the constraint system

FA
B = ∂(BA

B) , FAB
I
C = ∂(BAB

I
C) , F IJ

AB = ∂(BIJ
AB) ,

HAB = 0 ,

HA
BI

C = δB
Cψ

I
A − 1

4δ
B
Aψ

I
C ,

HAB
IJ
CD = εABCDφ

IJ ,

H IJK
ABC = 0 ,

on the chiral superspace M.
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Remarks

We obtain the fields (HAB, ψ
I
A, φ

IJ) which transform on-shell
under gauge transformations as

(HAB, ψ
I
A, φ

IJ) 7→ g−1 B(HAB, ψ
I
A, φ

IJ).

At the linearised level, they satisfy the superspace free
field equations

∂ACHCB = 0 , ∂ABψI
A = 0 , ∂AB∂ABφ

IJ = 0 .

For n = 1 (n = 2), the multiplet (HAB, ψ
I
A, φ

IJ) constitutes
an N = (n,0) tensor multiplet consisting of 1 self-dual
3-form, 2 (4) Weyl spinors, and 1 (5) scalar(s). Note that
for n = 2, the constraint ΩIJφ

IJ = 0 is automatically built in
due to Bianchi identities (contrary to N = 4 SYM in 4d)
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Generalisations

1305.4870 (LMP) with C Sämann
1403.7188 (submitted) with B Jurčo and C Sämann
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Strict Principal 3-Bundles

The constraint ∂(H)=0 for the 3-form curvature H implies
that it takes values in the centre of h.

A way to relax this is to categorify to the next level and
work with strict principal 3-bundles which are modelled on
Lie 2-crossed modules L ∂→ H ∂→ G.

In turn, these bundles come with 1-, 2- and 3-form gauge
potentials A, B, and C taking values in g, h, and l with
associated curvature forms

F := dA + 1
2 [A,A] , H := dB + A BB ,

G := dC + A BC + {B,B} ,

where {·, ·} : h× h→ l is the Peiffer lifting.
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Strict Principal 3-Bundles

The 4-form curvature G transforms covariantly provided

F = ∂(B) , H = ∂(C) .

Thus, ∂(H) = 0, however, this time X ∈ ker ∂ ⇔
[X ,Y ] = ∂({X ,Y}) 6= 0 for all Y ∈ h.

We have extended the above twistor construction to this
setting, established degree-3 Deligne cohomology, and
found 6d superconformal theories containing a
non-Abelian tensor multiplet.

Again, the Penrose–Ward transform boils down to
changing the corresponding Deligne cocycles via
boundary transformations which works due to the
vanishing of H1(F ,Ω2

π1
) and H1(F ,Ω2

π1
).

Note that in certain cases, these theories accommodate
the tensor hierarchy models of Samtleben, Sezgin &
Wimmer; see Palmer’s talk.
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Weak Principal k -Bundles

A more systematic way of generalising the above is to
make direct use of category theory.

Let M =
⋃

a Ua and define the Čech groupoid the groupoid
with the set of objects

⋃̇
aUa and the set of morphisms⋃̇

a,bUa ∩ Ub. Let BG be the groupoid which has only one
object and the elements of G as morphisms. Then,
principal G-bundles can be viewed as functors from the
Čech groupoid to BG.

We generalise this by defining weak principal k -bundles as
weak k -functors from the Čech k -groupoid to BG for weak
Lie k -groups G.
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Semistrict Principal 2-Bundles

Specifically, for k = 2: weak 2-category⇒ weak
2-groupoid⇒ weak 2-group⇒ semistrict 2-group⇒
semistrict Lie 2-group (only the associator remains
non-trivial).

We define semistrict principal 2-bundles as a weak
2-functors from the Čech 2-groupoid to the delooping BG
of semistrict Lie 2-groups G.

Differentiating G a la Ševera yields the corresponding
semistrict Lie 2-algebra (2-term L∞): one considers the
functor from the category of smooth manifolds M to the
category of G-valued descent data on surjective
submersions R0|1 ×M → M

Martin Wolf Self-Dual Higher Gauge Theory



Semistrict Principal 2-Bundles

Specifically, for k = 2: weak 2-category⇒ weak
2-groupoid⇒ weak 2-group⇒ semistrict 2-group⇒
semistrict Lie 2-group (only the associator remains
non-trivial).

We define semistrict principal 2-bundles as a weak
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Semistrict Principal 2-Bundles

Correspondingly, one finds 1-form A and 2-form B gauge
potentials with the curvatures

F := dA + 1
2µ2(A,A) = µ1(B) ,

H := dB + µ2(A,B)− 1
3!µ3(A,A,A) ,

where the µi are the higher products in the corresponding
2-term L∞ algebra

This construction also yields the full set of non-linear
gauge transformation by means of equivalence
transformations between functors.

This allows us to formulate explicitly semistrict degree-2
Deligne cohomology: semistrict principal 2-bundles with
connective structure are characterised by cocycles
({nabc}, {mab}, {Aa}, {Ba}, {Λab}) subject to equivalence;
note that Fa = s(Ba).
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Penrose–Ward Transform: P π1← F π2→ M

Theorem: There is a bijection between equivalence classes
(i) of holomorphic M-trivial semistrict principal 2-bundles on

P,

(ii) of holomorphically trivial semistrict principal 2-bundles on
F equipped with a flat relative connective structure and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M

dA + 1
2µ2(A,A) = µ1(B) ,

H = dB + µ2(A,B)− 1
3!µ3(A,A,A) = ?6H .

plus supersymmetry.
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Conclusions And Outlook
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Summary

In general, we have seen that the area of twistor geometry and
categorified principal bundles can be fruitfully combined to
formulate self-dual higher gauge theory in six dimensions.

The advantage of twistor geometry is that the e.o.m. and the
gauge transformations follow directly from complex algebraic
data on twistor space.

Many open questions remain such as what higher gauge
groups should be chosen, explicit solutions should be
constructed, dimensional reductions should be performed, etc
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Thank You!
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