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Abstract: We show that in the context of two-dimensional sigma models minimal cou-
pling of an ordinary rigid symmetry Lie algebra g leads naturally to the appearance of the
“generalized tangent bundle” TM ≡ TM⊕T ∗M by means of composite fields. Gauge trans-
formations of the composite fields follow the Courant bracket, closing upon the choice of a
Dirac structure D ⊂ TM (or, more generally, the choide of a “small Dirac-Rinehart sheaf”
D), in which the fields as well as the symmetry parameters are to take values. In these
new variables, the gauge theory takes the form of a (non-topological) Dirac sigma model,
which is applicable in a more general context and proves to be universal in two space-time
dimensions: A gauging of g of a standard sigma model with Wess-Zumino term exists, iff
there is a prolongation of the rigid symmetry to a Lie algebroid morphism from the action
Lie algebroid M × g→M into D →M (or the algebraic analogue of the morphism in the
case of D). The gauged sigma model results from a pullback by this morphism from the
Dirac sigma model, which proves to be universal in two-spacetime dimensions in this sense.
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1 Introduction

The Dirac sigma model (DSM) [1] was originally constructed so as to jointly generalize the
Poisson sigma model [2] and the G/G Wess-Zumino-Novikov-Witten (WZNW) model [4, 5],
both of which are two-dimensional gauge theories with no physical degrees of freedom, so-
called topological sigma models. As we will see, however, there exists also a non-topological
version of this sigma model, e.g. in generalization of the G/H WZNW model. In fact, this
generalization goes much further than one may think: it encompasses all gauged standard
sigma models with Wess-Zumino term in two dimensions. Here we consider at this stage
only standard gauging, starting with a rigid symmetry group G of an ungauged theory. In
the presence of a Wess-Zumino term such a gauging does not always exist, but if it exists,
the resulting functional is encompassed by the formalism. Non-standard gauge theories, as
discovered recently in [6], will be addressed in their two-dimensional form and also related
to the DSM in a separate work.

Standard gauging introduces Lie algebra valued 1-forms Aaea ∈ Ω1(Σ, g). The same Lie
algebra is acting on the target spaceM of the sigma model, ea 7→ va ∈ Γ(TM). Composition
thus provides a 1-form on the two-dimensional space-time Σ with values in the vector fields
overM , V = vaA

a. More precisely, if the map X : Σ→M corresponds to the (scalar) fields
from the ungauged theory, one obtains a gauge field V ∈ Ω1(Σ, X∗TM). In d = 2 it is near
at hand to amend a standard sigma model, which needs a metric g on the target M for its
definition, with (the X-pullback of) a 2-form B on M or, more generally and permitting
Wess-Zumino terms, a closed 3-form H ∈ Ω3

cl(M). Rigid invariance of B or H with respect
to g implies the existence of a map from g into the 1-forms on M , ea 7→ αa ∈ Γ(T ∗M).
Again, by composition we obtain a gauge field A = αaA

a ∈ Ω1(Σ, X∗T ∗M), or, if we
consider both of them as belonging together, a gauge field A = V ⊕A ∈ Ω1(Σ, X∗TM).
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Here TM = TM ⊕ T ∗M is the vector bundle sum of the tangent and the cotangent
bundle, which sometimes is called the “generalized tangent bundle”. Given an H as above,
it carries naturally the structure of a so-called (H-twisted) standard Courant algebroid, a
notion that we will recall in the main text. Among others, this bundle is equipped with a
canonical scalar product 〈·, ·〉 and natural bracket [·, ·], the Courant-Dorfmann bracket, on
its sections. We will show that these structures appear in the gauge transformations of A
as induced from those of the standard gauge fields.

The fields A and V are not indendent from one another. In particular, they turn
out to always take values in a Dirac structure.1 This is a subbundle of TM ⊕ T ∗M

which is maximally isotropic with respect to 〈·, ·〉 and closed with respect to the bracket,
[Γ(D),Γ(D)] ⊂ Γ(D). Moreover, in terms of the new variables—X together with the com-
posite field A—the gauged sigma model takes somewhat surprisingly precisely the form of
the Dirac sigma model. If the fields V ⊕A sweep out all of D, as considered in the original
work [1] on the DSM, the model is topological. However, in general, it is not necessary to
require this, which then permits the model to carry physical degrees of freedom.

The present paper is in some sense the Lagrangian counterpart of the paper [7] re-
lating current algebras of two-dimensional sigma models in their Hamiltonian formulation
to Courant algebroids. In particular, the Poisson bracket of symmetry generating currents
Jψ[ϕ] of a variety of two-dimensional models reflects a similar behavior as the one mentioned
above. More precisely, it was found that they follow the algebra

{Jψ[ϕ], Jψ̄[ϕ̄]} = J[ψ,ψ̄][ϕϕ̄]− F〈ψ,ψ̄〉[dS1(ϕ)ϕ̄] , (1.1)

where the scalar product and bracket in the twisted standard Courant algebroid are noted as
before; ψ,ψ̄ are sections in TM , ϕ,ϕ̄ test functions over S1, in combination they parametrize
the currents J . F on the r.h.s. is easy to explain, Ff [µ] ≡

∮
S1(X∗f)µ (for any f ∈ C∞(M)

and µ ∈ Ω1(S1)). The currents Jψ[ϕ] are slightly more intricate to define, but can be
regarded upon as follows: Jψ[ϕ] =

∮
S1 ϕX

∗〈ψ,P〉, where P = dS1X ⊕ p ∈ Ω1(S1, X∗TM),
with p being the canonical momentum 1-form conjugate to the “closed string” X : S1 →M .

Clearly, if the functions (currents) Jψ[ϕ] are to generate some symmetries on the phase
space T ∗LM , where LM = {X : S1 → M} denotes the loop space, for some subset of
sections ψ ∈ Γ(TM), on the right-hand-side of Equation (1.1) the anomalous F -terms must
vanish and the J-terms have to be parametrized by a section in the chosen subset. This is
in particular the case if one wants to use them for gauging, corresponding to (first class)
constraints on the Hamiltonian level. Evidently in the case of maximality, this implies that
necessarily the subset of admissible sections ψ have to lie inside a Dirac structure D ⊂ TM .
In any case, they have to define an involutive and isotropic subset of sections in TM , the
sheaf of which we call a Dirac-Rinehart sheaf (cf. Appendix A).

In the present paper instead of loops we have maps from an oriented 2-surface to the
target manifold M , X : Σ → M . Instead of the phase space variables, we will consider
AΦ := 〈X∗Φ,A〉 here, where Φ ∈ Γ(TM), to study the gauge transformations. Clearly,
knowing the transformation behavior of AΦ, one can reconstruct the one of X and the

1This picture is “essentially correct”, but needs some refinement, cf. in particular Appendix A.
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gauge fields (V , A, and Aa). Similar to the currents above, we will parametrize gauge
transformations by sections ψ in TM and test functions ϕ ∈ C∞(Σ). One then finds

δ(ψ,ϕ)AΦ = X∗〈ψ,Φ〉dΣϕ+A[ψ,Φ] ϕ . (1.2)

This will be obtained in the special case of ordinary gauge symmetries on the composite
fields, in which case sections ψ (as well as V ⊕ A) take values in involutive, isotropic sub-
spaces D. But one can also postulate the transformations (1.2) more generally. Calculating
the commutator of such gauge transformations in this more general setting, one finds

[δ(ψ,ϕ), δ(ψ̄,ϕ̄)]AΦ = δ([ψ,ψ̄],ϕϕ̄)AΦ −X∗〈0⊕ d〈ψ, ψ̄〉,Φ〉 dΣ(ϕ)ϕ̄ . (1.3)

Thus, if one wants the transformations (1.2) to close for any choice of test functions ϕ and a
subset of sections ψ ∈ Γ(TM), one needs the sections to take values in some Dirac structure
D ⊂ TM (or at least inside some D) by the same argument as above for the currents.

For those symmetries that are obtained from the gauging of a rigid symmetry, this is
always satisfied: There exists a bracket preserving map µ from M × g into that D where
the composite gauge field A takes values in. In more technical terms, this map µ is a Lie
algebroid morphism (a Dirac structure turns out to carry the structure of a Lie algebroid).
Any standard sigma model with Wess-Zumino term which has been gauged can be obtained
from the DSM by the pullback of such a morphism µ. Note also that this can include cases
where dim g > dimM . In the most extreme case, when one regards a limit where the metric
of the sigma model is turned to vanish and only the Wess-Zumino term H remains, this
group can be even infinite dimensional, while its gauging by means of the composite fields
leads to the finite number of gauge fields only. This was illustrated in detail in [8] also.

The Dirac sigma model as well as its special case the Poisson sigma model (PSM) are
classical examples for gauge theories with so-called open algebras. This seems to contradict
the role of the DSM as a universal model for any ordinary gauged sigma model, where the
symmetries follow the structural Lie algebra g and are certainly closed. We will resolve this
apparent paradox in the main part of the paper. For example, in the case of the PSM, the
main lesson is that in contrast to the conventional use of elements in the pullback bundle
ε ∈ Γ(X∗T ∗M) to parametrize the symmetries, which then corresponds to a collection of
dimM functions ϕ ∈ C∞(Σ), one should parametrize them as above, that is by elements in
the tensor product C∞(Σ)⊗ Γ(TM). It is the non-trivial dependence on the second factor
that closes the algebra, in accordance with the previous observations [9].

The structure of the paper is as follows: We first recall the setting of rigid symmetries
in the context of 2d standard sigma models with Wess-Zumino term. We then show that
minimal coupling, applied to the simplest type of actions in this family where the Wess-
Zumino term is local and strictly invariant, leads to the correct form of the Dirac sigma
model upon introduction of the above-mentioned composite fields V and A. In section 4
we recall some basic notions of the Courant algebroid TM and its Dirac structures and
show how to obtain any gauged sigma model with WZ-term from the DSM by means of a
pullback. In section 5 we address the gauge symmetries, arriving at the formulas (1.2) and
(1.3) anticipated already above. In a final section we present our conclusions as well as an
outlook on follow-up research. Appendix A contains a mathematical, technical refinement.
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2 Action Functionals with Rigid Symmetries

The standard sigma model in defined as a functional of smooth maps X : Σ → M where
(Σ, h) is some oriented Lorentzian signature pseudo-Riemannian d-manifold and (M, g) is
a Riemannian or pseudo-Riemannian n-manifold. The action functional is then given by

Sg[X] =

∫
Σ

1

2
gij(X) dXi ∧ ∗dXj ≡

∫
Σ
∂µX

i∂νX
j hµνgij(X)

√
|det(h)|ddσ. (2.1)

In this paper we consider d = 2. We then can extend the above action by adding the
pullback of a 2-form B on M assumed to be part of the given data on the target:

S[X] =

∫
Σ

1

2
gij(X) dXi ∧ ∗dXj +

∫
Σ

X∗B. (2.2)

Let us suppose that the metric g has a nontrivial isometry group G, which infinitesimally
implies

Lvg = 0 , (2.3)

valid for the vector fields v = ρ(ξ) onM corresponding to arbitrary elements ξ ∈ g = Lie(G),
ρ denoting the representation of g on M induced by the G-action. If in addition B is G-
invariant up to a “total divergence”, i.e. if there exist (d− 1)-forms β for any v such that

LvB = dβ , (2.4)

the action (2.2) becomes invariant under the rigid symmetry group G. In formulas this
implies that for any such a vector field v onM , an infinitesimal change of the fields induced
by δXi := X∗vi leaves the action (2.2) invariant (up to a boundary term

∫
∂ΣX

∗β, that is
usually considered irrelevant at this point).

More generally, the B-contribution in (2.2) can be replaced by a Wess-Zumino term

SWZ =

∫
Σ̃

X̃∗H, (2.5)

the invariance condition (2.6) being generalized to

ιvH = dα . (2.6)

For H = dB and α = β − ιvB this reproduces the previous situation (the boundary of Σ̃ is
assumed to be Σ and X̃ restricts to X on the boundary by assumption), but the variational
problem is well-defined also more generally for H a closed d + 1-form. While gauging the
rigid symmetry group G of (2.2) in the case of vanishing β is effected by minimal coupling
(reviewed below), in the presence of a Wess-Zumino term it is in general even obstructed
[10, 11]: Only if H permits an equivariantly closed extension, the sigma model with Wess-
Zumino term can be gauged. We will come back to this issue below.
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3 Standard Methods of Gauging and Composite Fields

The kinetic term in (2.2) does not pose any problem in gauging. With (2.3) being satisfied,
its rigid G-symmetry is lifted to a local one, G ≡ Maps(Σ, G), merely by minimal coupling:
This is effected by introducing Lie algebra valued 1-forms A ≡ Aaea ∈ Ω1(Σ, g), ea denoting
a basis of g, and replacing dXi everywhere within the functional by the covariant derivative
DAX

i ≡ dXi+via(X)Aa, where i = 1, . . . , n and va := ρ(ea) ≡ ρia(X)∂i for a = 1, . . . ,dim g.
Thus, the gauging of (2.1) is effected by

Skin[Xi, Aa] :=

∫
Σ

1

2
gij(X) DAX

i ∧ ∗DAX
j . (3.1)

Let us next focus on the Wess-Zumino term, generalizing the B-contribution of (2.2).
As mentioned, minimal coupling does not work in this case in general (for example, it would
produce a triple A contribution, which would not reduce to a two-dimensional boundary
term even after variation). However, as often with Wess-Zumino terms, the general con-
struction can be obtained from the special case H = dB upon eliminating all terms that
contain B explicitely. To apply minimal coupling for a B-term, we in addition need to
require β to vanish in (2.4). In this special case we have to identify α of eq. (2.6) with
−ιvB; in fact, so for each va:

αa ∼ −ιvaB . (3.2)

A minimally coupled 2-form B consists of three terms, one that is B itself, which we will
rewrite as (2.5) using Stokes theorem, one that is linear in Aa, and one that it quadratic in
these gauge fields:∫

Σ

1

2
Bij(X)DAX

i∧∗DAX
j =

∫
Σ̃

X̃∗(dB)−
∫

Σ
Bijv

i
a(X)Aa∧dXj−1

2
Bijv

i
av
j
bA

a∧Ab . (3.3)

Using the identification (3.2), the last integrand can be rewritten for example according to
1
2X
∗(ιvbιvaB)Aa ∧ Ab ∼ −1

2v
i
bαaiA

a ∧ Ab. Introducing composite gauge fields according to
the pattern suggested by this rewriting,

Ai := αai(X)Aa , V i := via(X)Aa , (3.4)

where we stressed that these new gauge fields depend on the old ones as well as the scalar
fields Xi, the minimally coupled action (3.3) can be rewritten as

Stop =

∫
Σ
Ai ∧ dXi − 1

2
Ai ∧ V i +

∫
Σ̃

X̃∗H . (3.5)

Adding to this the minimally coupled kinetic term, SDSM := Skin + Stop, rewritten by
means of the composite fields as well, we obtain

SDSM =

∫
Σ

1

2
gij(X) (dXi−V i)∧∗(dXj −V j) +

∫
Σ
Ai ∧dXi− 1

2
Ai ∧V i +

∫
Σ̃

X̃∗H . (3.6)
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This has precisely the form of the Dirac sigma model introduced in [1]. In the end, this
functional depends only on H and, by means of the identification (3.4), the couples (va, αa)

entering eq. (2.6). It does in particular no more depend explicitely on B. It turns out
[10, 11] that this provides a solution of the gauging problem in two dimensions even in
cases where it cannot be obtained from minimal coupling of B for vanishing β. It gives the
general solution whenever a rigid symmetry of H can be gauged without obstructions. It
remains to see, next, how the usual formulation of the theory and this alternative one with
the composite fields are related to one another in detail, how the gauge transformations
map to one another etc. We will now turn to these questions.

4 Generalized geometry and Lie algebroid morphisms

First we note that Ai and V i carry a lower and an upper index and thus naturally live in
the cotangent and tangent bundle of M respectively (pulled back to Σ by the map X, but
we will ignore those subtleties for a moment). On the other hand, they are not independent
from one another, any choice of couples (va, αa) will single out a subspace D at each point
x ∈ M in which the sum of these two composite fields can take values in. Schematically
this is illustrated in Fig. 1, the map µ being determined by (va, αa)

dim g
a=1 : The sum of the

tangent and the cotangent bundle TM ⊕ T ∗M =: TM over a manifold M equipped with a
closed 3-form H naturally carries what is called a Courant algebroid structure. Any section
ψ of TM corresponds to a couple of a vector field v and a 1-form α. First, TM has a natural
projection ρ : TM → TM,ψ 7→ v. Second, it carries a natural inner product as well as a
bracket for the sections:

〈(v, α), (w, β)〉 = ιvβ + ιwα , (4.1)

[(v, α), (w, β)] = ([v, w],Lvβ − ιwdα+ ιwιvH) . (4.2)

For later purposes we will need some compatibility relation satisfied by the above brackets.
The most important property of the Courant-Dorfmann bracket in the above form (4.2) is
that it satisfies a left-Leibniz property with respect to itself: for arbitrary sections ψ1, ψ2,
ψ3 ∈ Γ(TM) one has

[ψ1, [ψ2, ψ3]] = [[ψ1, ψ2], ψ3]] + [ψ2, [ψ1, ψ3]] . (4.3)

On the other hand, the bracket is not symmetric. Instead one finds

[ψ,ψ] =
1

2
(0,d〈ψ,ψ〉) , (4.4)

for arbitrary sections in TM , as one verifies easily from the above definitions. Passing to an
anti-symmetrized bracket instead of the above one, the relation (4.3) is no more satisfied;
so with neither of the two brackets one obtains a Lie algebra on the sections of TM . One
finally also verifies the compatibility of the bracket with the inner product:

ρ(ψ1)〈ψ2, ψ3〉 = 〈[ψ1, ψ2], ψ3〉+ 〈ψ2, [ψ1, ψ3]〉 . (4.5)
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We now intend to understand the map µ introduced above better. The identification
(3.2), which led us from the minimally coupled B-terms (3.3) to the (more general) sigma
model (3.5), implies the constraint:

ιvaαb + ιvbαa = 0 . (4.6)

Moreover, from eq. (2.6) we can induce immediately that for any two vector fields v and ṽ
in the representation of g one has dLṽαv = dα[ṽ,v]. This implies that up to closed 1-forms
one always has

Lvaαb = Ccabαc , (4.7)

where Ccab denote the structure constants of g in the given basis. In general, there can be
obstructions in obtaining the above equation on the nose, even when using the ambiguity
in the defninition of αs up to closed 1-forms. The situation is very analogous to the one for
equivariant moment maps in conventional Hamiltonian mechanics, where Hamiltonians ha
generating a symplectic action va are defined only up to constants (closed 0-forms) and in
general there may be obstructions for a choice satisfying Lvahb = Ccabhc. We will, however,
now assume that the above two conditions hold true for some choice of αs in (2.6). These

T*M

TM

Ai

D

Vi
Aa

Figure 1. At each point σ ∈ Σ, the standard g-valued gauge fields A = Aaea assign to each
tangent vector of Σ a vector in g; this vector, in turn, is mapped by the morphism µ to a vector in
DX(σ) ⊂ (TM ⊕ T ∗M) |X(σ).
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are also precisely the conditions required for an equivariantly closed extension of H and
thus its obstruction-free gauging, cf. [10, 11].

It is obvious that (4.6) implies that the subspace D into which µ maps has to be
isotrophic with respect to the inner product (4.1). Moreover, the rigid invariance condition
for H, eq. (2.6), implies cancellation of the last two terms in the Courant-Dorfmann bracket
(4.2), and the equivariance condition (4.7) is now found to be equivalent to the closure of
this bracket, yielding [(va, αa), (vb, αb)] = Ccab(vc, αc).

By definition, closed, maximally isotropic subbundles of the exact Courant algebroid
are called Dirac structures. Dropping the condition of maximality, we call them small Dirac
structures. If the rank is permitted to also change from point to point, this gives something
that one may call Dirac-Rinehart sheaf. At least in some cases it will be possible to include
the image in a honest Dirac structures D. So, at least for simplicity of the language, we
will now assume this to be the case. We complement this paragraph, however, with a more
detailed discussion of this issue in the Appendix A.

So, at least when understood like explained in the previous paragraph, the image of
µ lies inside a Dirac structure D. As mentioned above, the three conditions (2.6), (4.6),
and (4.7) are those for the existence of an equivariantly closed extension of the 3-form H

[11]. In [7] these conditions were found to correspond to the existence of a moment map
on a Hamiltonian level together with a selection of a Dirac structre. Here we obtain such
relation on the Lagrangian level, including the relation of the gauged action functional to
the action functional of the Dirac sigma model [1], which has precisely the currents of [7]
(those appearing in Equation (1.1)) as their constraints, Jψ[ϕ] ≈ 0 for any ψ ∈ Γ(D) and
any choice of the test functions ϕ (cf. [1] for the corresponding details).

Further remarks are in place: The map from the Lie algebra valued gauge fields to
the composite ones can have a considerable kernel, in particular if dim g > rkD = dimM

there even has to be a non-trivial kernel. This becomes most transparent if we drop the
kinetic term altogether and regard the symmetries of the Wess-Zumino term only. This can
easily give an infinite dimensional group. We provide an example: We already remarked
above that the condition (2.6) together with (4.7) is a higher analogue of (pre)symplectic
structures and moment maps (cf. also [12]). Let (M0, ω0) be a 2m-dimensional ordinary
symplectic manifold and consider M := M0×R+ with the 2-symplectic form H = ω0 ∧ dC

(where C is the strictly positive coordinate on R+). Now any Hamiltonian vector field vf
on M0 lifts canonically to a 2-Hamiltonian vector field on M (we denote it by the same
letter), and thus to a rigid symmetry of H in the sense of (2.6), where αf := Cdf provides
a choice of 2-Hamiltonians satisfying both conditions (4.6) and (4.7), as one easily verifies.
Here clearly g = Ham(M0) is an infinite dimensional group. In this example, the Dirac
structure can be identified with the graph of an H-twisted Poisson bivector Π = 1

CΠ0, Π0

denoting the Poisson bivector of ω0 (lifted trivially to M). Since here always vf = ιαfΠ,
the composite gauge field V i can be expressed uniquely in terms of the gauge field Ai by
means of V i = AjΠ

ji(X). The gauged sigma model (3.5) then takes the form of the twisted
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Poisson sigma model [13]

SHPSM =

∫
Σ
Ai ∧ dXi +

1

2
Πij(X)Ai ∧Aj +

∫
Σ̃

X̃∗H , (4.8)

which gave rise to the notion of a Wess-Zumino or H-twisted Poisson structure and found
subsequently to be a particular Dirac structure [14].

Thus the functional (4.8) with Π = 1
CΠ0 and H = ω0 ∧ dC provides a gauging of

the WZ-action (2.5) w.r.t. the infinite dimensional gauge Lie algebra g = Ham(M0). Any
standard method, such as the one of an ordinary equivariantly closed extension [11], needs
for this an infinite number of gauge fields Aa. By the present reformulation, which per-
mits to forget about the fact that one may consider Ai as composite fields, one needs only
n = 2m + 1 1-form gauge fields. In [8] this was related to an alternative, non-standard
equivariant extension applicable in the context of at least Dirac structures (but with ade-
quate modification potentially also to higher Lie algebroids, following the underlying ideas
in [15]).

We may use the same example to show that there may be different Dirac structures
relating to the same Lie algebra g and thus different gauged actions. This corresponds to
different equivariant extensions of H or, equivalently, different choices of 2-Hamiltonians
α. In the above example we could equally well have chosen αf = −fdC, which singles out
another n-dimensional subbundle D of TM . It is also a Dirac structure, but one that is
for example not the graph of any bivector field. Both the gauge invariant functionals are
of the form (3.5), the different details lying in the map µ. Only in the first example it is of
the form of a twisted PSM.

The map µ can be viewed upon as a Lie algebroid morphism: Any Lie algebra action
on a manifold gives rise to a socalled action Lie algebroid structure on E = M × g (cf.,
e.g., [16]). Although the Courant algebroid TM = TM ⊕ T ∗M is not a Lie algebroid (but
rather a particular Lie 2-algebroid), any Dirac subbundle D is canonically equipped with
a Lie algebroid structure.2 In particular, the bracket (4.2) becomes a Lie bracket upon
this restriction, as obvious from combining the Equations (4.3) and (4.4) with the fact that
a Dirac structure D is isotropic, which yields 〈ψ,ψ〉 = 0 for any ψ ∈ Γ(D). The map
µ : A → D, (x, ξaea) 7→ (x, ξa(via∂i ⊕ αaidxi)) is a morphism of Lie algebroids, as follows
from the fact that it was seen above to preserve the brackets and that the action of ξ and
µ(ξ) agree on M by definition of the anchor maps.

The existence of a Lie algebroid morphism from the action Lie algebroid E to a Dirac
structure D is not yet sufficient for the gauging to exist. We need in addition that the
image (v(ξ), α(ξ)) of any constant section ξ ∈ Γ(E) satisfies the “rigid symmetry condition”
(2.6). Here “constant” is well-defined, since E comes as a trivialized bundle, E = M × g,
thus carrying a global tele-parallel structure; such sections are evidently in bijection to
elements of the Lie algebra g. It is sufficient to check (2.6) on a basis ea of the Lie algebra,

2This holds also true for small Dirac structures defined in the Appendix. If the image of µ is not of
constant rank and only a Dirac-Rinehart sheaf and if in addition it turns out that there is no embedding of
the image into a small Dirac structure, then the notion of the Lie algebroid morphism has to be replaced
by an algebraic analogue, cf also Appendix A.
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moreover, since this condition is R-linear. However, it is not C∞(M)-linear and thus will
not hold true for all sections in D. On the Lagrangian level this condition is related to
the original rigid symmetry discussed in section 2. On the Hamiltonian as presented in [7]
it is more hidden. There, the discussion being independent of action functionals or their
corresponding Hamiltonians, it appears in the existence of the currents J(v,α)[ϕ]: given a
g-action on the loop space, one asks it to have a Hamiltonian lift to the cotangent bundle
equipped with the canonical symplectic structure twisted by a transgression of the closed
3-form H. This is tantamount to the condition (2.6) in that framework.

In general the image of µ does not need to span the whole Dirac structure D. If it
does, it was shown in [1] that the model

SDSM =

∫
Σ

1

2
gij(X) (dXi − V i) ∧ ∗(dXj − V j) + Stop (4.9)

is topological (in the sense that the space of solutions to the Euler Lagrange equations
modulo the gauge symmetries is a finite dimensional space). If the image of µ smears out
a subbundle F ⊂ D only, the model remains “physical”. A typical example is the G/H
WZW-model [17]; only in the case that the subgroup H is all of G, it becomes topological,
otherwise it describes strings moving on a coset space. In general, moreover, the rank of µ
can change from point to point inM and its image does not define a vector bundle, but only
a sheaf of OM -modules (cf. also the discussion in Appendix A). On the other hand, let us
remark that even at a fixpoint of the g-action, where all vas vanish, continuity may require
some αas to be nonzero at that point. This happens for instance for the adjoint action of a
semi-simple Lie group on itself, for which there exists very well a Dirac structure. Finally,
in general, a Dirac structure can happen to be neither the graph of a two-form B nor of
a bivector Π globally (even after a change of the splitting in the exact Courant algebroid,
cf. [1]); there is a characteristic class that can be associated to this obstruction, obtained
first by A. Alekseev (cf. [18] for the construction). An example of such a Dirac structure is
provided by the G/G WZNW model, with the Dirac structure being the above-mentioned
one corresponding to the adjoint action (cf., e.g., [1]).

5 Gauge transformations and the Courant bracket

We now turn to the gauge transformations of the composite fields. Such as the gauge fields
Aaea ∈ Ω1(Σ, g) are mapped to the composite gauge fields A ∈ Ω1(Σ, X∗D) by the map
µ (which also includes and uses the map X : Σ → M), cf. Figure 1, likewise this applies
also to the gauge parameters εaea ∈ C∞(Σ, g), which get mapped to Dirac-structure valued
functions. In analogy to (3.4), this corresponds to

αi := εa(σ)αai(X(σ)) , vi := εa(σ)via(X(σ)) . (5.1)

Now let (w, β) ∈ Γ(TM) be any couple of a vector field and a 1-form over M . Then a
direct computation starting from δεA

a = dεa + CabcA
bεc (together with δεXi = vi ≡ εavia
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and the identities satisfied by va and αa) yields the remarkable formula

δε(w
iAi + βiV

i) = d1(ιvβ + ιwα) + (5.2)

[v, w]iAi + (Lvβ − ιwdα+ ιwιvH)iV
i,

to be compared with the two structural equations (4.1) and (4.2) of the exact Courant
algebroid. Here d1 denotes the de Rham differential on Σ, but acting only on the explicit
Σ-dependence. Likewise, the derivative terms in the second line are understood as acting
only on M , reproducing precisely the Courant-Dorfmann bracket. On a more formal level,
it is preferable to interpret the formulas as living on the product of Σ andM . Then d1 ≡ dΣ

is the deRham differential on the first and d ≡ dM the one on the second factor. Likewise,
the bracket of vector fields on M are only well-defined in this setting, while not so in the
pull-back bundle over Σ for example. Only in a last step then one takes the pullback by X
of functions on M to become functions on Σ. (Certainly this information can be retrieved
from knowing formulas like (5.2) on all of Σ×C∞(Σ,M), the second factor corresponding
to the space of maps X : Σ→M).

We remark that the first line vanishes, if the section (w, β) takes values in D (this
changes if it also depends explicitly on Σ, precisely by its d1 derivative in that case, cf. Equa-
tion (5.6) below). Furthermore, the last two terms in the second line cancel out against one
another due to the rigid symmetry condition (2.6); thus the second line can be rewritten
also simply as (Lvw)iAi + (Lvβ)iV

i. This implies in particular

δεV
i = d1vi + vi,jV

j , δεAi = d1αi − vj ,iAj . (5.3)

Whichever of the above, under the given assumptions equivalent formulas one uses, one al-
ways finds that the gauge transformations corresponding to those obtained from the original
ones, follow their Lie algebra (C∞(Σ, g), [·, ·]):

[δε, δε̄] = δ[ε,ε̄] (5.4)

for any choice of ε, ε̄ ∈ C∞(Σ, g). On the other hand, the Poisson sigma model, which is
a special case of (3.5), is maybe the simplest prototype of a theory with a so-called “open
gauge algebra” [19, 20]. Moreover, having observed that µ : M × g → D is a morphism of
Lie algebroids, the map (5.1) should provide also a morphism of the ((closed)) Lie algebra
of gauge transformations. How do these obeservations go together?

To address this question properly and in the most elegant way, we first reformulate
Equation (5.2) in a form more adapted to the Courant structure, generalizing it simul-
taneously to the case where also the initial section (w, β) can depend additionally on
Σ, since the second line in (5.2) is of this nature anyway. For this purpose we consider
Φ ≡ (w, β) ∈ C∞(Σ)⊗ Γ(TM) and call the combination appearing on the left of Equation
(5.2) simply

AΦ := wiAi + βiV
i ≡ 〈Φ,A〉 , (5.5)

where we used the notation of Equation (4.1) for the bracket on the right-hand-side. De-
pending on the context, one may interpret the expression on the r.h.s. also as being con-
sidered under the pullback by X : Σ→M so as to be defined on the field space. We follow
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more physics-oriented conventions here, not distinguishing these situations too pedantically
in favor of a simplified notation.

If we then call the elements (v, α) in the image of the map µ by Ψ ∈ C∞(Σ)⊗Γ(TM),
the formula (5.2) takes the simple form

δΨAΦ = 〈d1Ψ,Φ〉+A[Ψ,Φ] . (5.6)

Here the derivative d1 acts only on Ψ, which contains the parameters of the gauge trans-
formations, for which reason we wrote this derivative inside the inner product, which, in
turn, is not effected by this derivative.

Before continuing to now calculate the commutator of gauge transformations in this
language, some further remarks may be in place. First, to understand that d1Φ is well-
defined without the introduction of a connection on M , we may want to interpret it as
living on the product Σ×D or Σ×TM , in which case we can perform the derivative on the
function part on the first factor without problems; the pullback by X is then to be taken
afterwards only. These “explicit” derivatives have a long tradition in physics and always
can be reinterpreted in such a way. Second, the symmetries arising from the map µ by
means of (5.1) yield sections Ψ that live inside the Dirac structure D (or a Dirac-Rinehart
sheaf D) and not all of TM . It is tempting, however, to take the transformations (5.6)
as given for any section Ψ ∈ C∞(M) ⊗ Γ(TM) and to subsequently consider the closure
of such transformations as a condition on these parameters, in some analogy with [7]. In
fact, to make this analogy more transparent, we have chosen to write the parametrizing
sections according to Ψ = ϕψ in the Introduction, with ϕ ∈ C∞(Σ) playing the role
of (arbitrary) test functions and ψ the section in the Courant algebroid to eventually be
restricted to a Dirac structure. Certainly, any section Ψ is a sum of such factorized ones
and a parametrization like this does not change the picture, since at the end one always
passes to the linear span of the symmetry generators to obtain the symmetry algebra.

We now assume Ψ and Ψ̄ to be arbitrary such symmetry generators and we will study
their commutators when acting on the variables AΦ, where we permit Φ to be likewise
a Σ-dependent section in TM for generality. The calculation will be surprisingly elegant
and short upon using the structural identities (4.3), (4.4), and (4.5) of the Courant alge-
broid. Evidently, for reapplying (5.6) to itself, we also need to know, how Ψ acts on a
(Σ-dependent) function f on M . Clearly this is given by

δΨf = ρ(Ψ)f , (5.7)

the application of the vector field part of Ψ to the function f on M (ignoring all the
Σ-dependence, f being permitted to simultaneously be a differential form on Σ).

Now we are ready to perform the calculation and we will do it in all detail:

[δΨ, δΨ̄]AΦ = δΨ

(
〈d1Ψ̄,Φ〉+A[Ψ̄,Φ]

)
−
(
Ψ↔ Ψ̄

)
(5.8)

= ρ(Ψ)〈d1Ψ̄,Φ〉+ 〈d1Ψ, [Ψ̄,Φ]〉+A[Ψ,[Ψ̄,Φ]] −
(
Ψ↔ Ψ̄

)
= 〈[Ψ, d1Ψ̄]− [Ψ̄, d1Ψ],Φ〉+A[Ψ,[Ψ̄,Φ]]−[Ψ̄,[Ψ,Φ]] .
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Here the second term in the second line arose from the inhomogeneity of the transformation
property (5.6) of A. To arrive from the second to the third line, we first applied Equation
(4.5) to the first term, noticing that one of the two resulting terms cancels against the
second term due to the anti-symmetrization in Ψ and Ψ̄. To find the new parameter acting
on Φ, we may apply Equation (4.3) to the last term in the equation above, which then
transforms into A[[Ψ,Ψ̄],Φ]. Comparison with (5.6) shows that we need to transform the first
two terms into 〈d1([Ψ, Ψ̄],Φ〉, which in fact would follow at once, if the Courant-Dorfmann
bracket (4.2) were antisymmetric (note that the bracket is defined completely on M and
does not see the derivative along Σ). In general, however, is not antisymmetric and we pick
up an additional term according to Equation (4.4), which yields

[Ψ̄, d1Ψ] + [d1Ψ, Ψ̄] = d〈d1Ψ, Ψ̄〉 . (5.9)

Here we again used a simplified notation, d being as above the deRham differential on M
only and we interpret the resulting 1-form on M as a section in TM by extending it trivial
to the TM -part, df ∼ (0,df). Putting these observations all together, the symmetry laws
(5.6) and (5.7) induce the following commutators on the variables (5.5):

[δΨ, δΨ̄]AΦ = δ[Ψ,Ψ̄]AΦ −
〈
d〈d1Ψ, Ψ̄〉,Φ

〉
, (5.10)

where the brackets on the right-hand side are those defined in Equations (4.2) and (4.1)
above. Closure of the gauge symmetries parametrized by sections Ψ does require them
to take values inside some Dirac structure D ⊂ TM , as we anticipated already in the
Introduction: from the above Equation (5.10), one concludes Equation (1.3) by means of
setting Ψ := ϕψ and likewise so for the barred variables.

If, on the other hand, we require Ψ and Ψ̄ to be elements of C∞(Σ)⊗Γ(D) for a given
Dirac structure D ⊂ TM , then we indeed obtain the closed algebra

[δΨ, δΨ̄]AΦ = δ[Ψ,Ψ̄]AΦ (5.11)

without the “anomalous term” on the r.h.s. of (5.10) and in accordance with Equation (5.4).
We are now left only with understanding how one reobtains the “open algebra” from

the above closed one in the case of the general Dirac sigma model or its special case like the
H-twisted Poisson sigma model (4.8). To simplify the discussion, we focus on this latter
case, i.e. on a Dirac structure which is the graph of a bivector Π so that each element can
be uniquely parametrized by means of x ∈M together with an element α ∈ T ∗xM according
to αi (Πij∂j ,dx

i) ∈ Dx ⊂ TMx. This defines a Dirac structure, iff [14] the bivector field Π

is H-twisted Poisson [13] (cf. also [21]), thus satisfying, by definition,

1

2
[Π,Π] = 〈H,Π⊗3〉 , (5.12)

where the brackets on the r.h.s. denote contraction here. This has the advantage that we
can focus on the gauge fields Ai, the fields V is being determined by them (and X : Σ→M)
according to V i = −ΠijAj .
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To further simplify the discussion, we first consider the ordinary Poisson sigma model
(PSM), resulting from (4.8) for H = 0. Then the condition (2.6) reduces to dα = 0.3 It is
easy to see, that the 1-form part (which determines all of the section in D) of the bracket
(4.2) stays inside the closed forms: in fact, for any α, β ∈ Ω1

cl(M) one has

[α, β] = d〈Π, α⊗ β〉 (5.13)

where the brackets on the r.h.s. denote simple contraction again: 〈Π, α⊗β〉 = ιβιαΠ. Here
we used that the vector-field part of a section in D with 1-form part α has the form v = ιαΠ.
So, also in this way, we find a closed algebra (in fact, in agreement with [9]).

The known open algebra of the PSM arises when one regards the parameters of the
gauge transformations as being sections in the pullback bundle X∗T ∗M . This corresponds
to elements α = αi(σ, x)dxi in the present picture that are independent of x in some partic-
ular coordinate system onM . Although closed 1-forms produce closed (even exact) 1-forms
under the bracket (5.13), 1-forms with constant coefficients αi (in some fixed coordinate
system) produce likwise 1-forms if and only if the bivector Π is a linear function of x in
the chosen coordinate system. This corresponds to the case where the PSM reduces to a
BF-theory for some Lie algebra, the dual of which is the target Poisson manifold [2].

Let us make this more explicit. Suppose α = εi(σ)dxi and ᾱ = ε̄i(σ)dxi, such that ε
and ε̄ can be regarded as living in Γ(X∗T ∗M).4 The sections Ψ and Ψ̄ of Equation (5.11),
which is still applicable here (!), can be identified with these α and ᾱ, respectively. We first
show that like this one reproduces the usual gauge transformations [2, 3] of the PSM,

δεAi = dΣεi(σ) + Πjk
,iAjεk , (5.14)

from (5.6) as a special case. Indeed, AΦ reduces to Ai for Φ = (0,dxi) and, as we know,
the Equation (5.6) reduces to the second equation in (5.3), where now vj ≡ Πkjαk and thus

vj ,i ≡
(

Πkjαk

)
,i

= Πkj
,iεk(σ) . (5.15)

Since also d1αi ≡ dΣεi, it is evident that Equation (5.14) can be obtained from the present
formulas. Let us now turn to the r.h.s. of Equation (5.11). For this we need to calculate the
bracket between Ψ and Ψ̄, which, according to Equation (5.13), gives the new parameters

[εi(σ)dxi, ε̄j(σ)dxj ] = d
(
Πijεiε̄j

)
= Πkl

,i(x)εk(σ)ε̄l(σ)dxi =: ε̂i(σ, x)dxi , (5.16)

where we recall that d ≡ dM and where we depicted the coordinate dependences on the
r.h.s. for clarity.

3 We use this occasion to correct a mistake at the end of [9]: For gauge invariance of the PSM in the
present picture as well as the one advocated in [9], the condition dα = 0 is necessary (and not just the
weaker one given in Proposition 9 of [9]; the mistake in the proof there occured by not writing the pull-
back, which does not commute with dΣ). There is an option to avoid restriction to dα = 0 by changing the
picture: either by lifting it to the tangent as in [8] or by working with higher jets.

4To distinguish these parameters from those appearing in Equation (5.4), we used another type of epsilon,
ε instead of ε.
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In the “standard picture”, with parameters taking values in the pullback bundle, the
new parameter applicable for the commutator of two gauge transformations of the type
(5.14), is of the form

ε̃i(σ) = Πkl
,i(X(σ))εk(σ)ε̄l(σ) ≡ ε̂i(σ,X(σ)) (5.17)

and is viewed as a function of σ only (which, in some sense, it is). Let us now, on the other
hand, specialise the gauge transformation (5.3) for the parameter found at the r.h.s. of
Equation (5.16) and corresponding to the bracket [Ψ, Ψ̄]. First, as anticipated already
above, we observe that although the parameters entering the bracket on the l.h.s. were
independent of x, the one on the r.h.s. is not, except for precisely the case that Π(x) is
linear in x. Thus there is now no good reason that the transformations (5.6)—or their
special case (5.3)—again lead to a gauge transformation of the form (5.14) (since this was
seen to result from x-independent parameters) and, in fact, this will not be the case: To see
this in detail, we specialize the gauge transformations on the r.h.s. of (5.3) to the parameters
appearing on the r.h.s. of Equation (5.16). Here it is useful to use a more mathematical
notation, displaying pullbacks by X : Σ → M (or its trivial extension to X : Σ → Σ ×M)
explicitly.5 In detail:

[δε, δε̄]Ai = X∗δ[α,ᾱ]Ai (5.18)

= X∗dΣε̂i(σ, x)−X∗
(

Πkj(x)ε̂k(σ, x)
)
,i
Aj

= dΣX
∗ε̂i(σ, x)−X∗dM ε̂i(σ, x) +

+X∗
(

Πjk(x)
)
,i
X∗ε̂k(σ, x)Aj +X∗Πjk(x)X∗ε̂k,i(σ, x)Aj

= dΣε̃i(σ) + Πjk
,i(X(σ))Aj ε̃k(σ)−X∗(ε̂i,k(σ, x))X∗(dxk + ΠkjAj) .

Here we used that the total deRham differential commutes with the pullback, which gives
dΣX

∗ = X∗(dΣ + dM ), as well as the fact that the 1-forms (5.16) are no more constant but
remain closed so that ε̂k,i = ε̂i,k. Explicitly, ε̂i,j = Πkl

,ij(x)εk(σ)ε̄l(σ), so that together with
(5.17) we finally obtain the known open algebra

[δε, δε̄]Ai = δε̃Ai −Πkl
,ij(x)εk(σ)ε̄l(σ)

(
dΣX

j(σ) + Πjm(X(σ)Am
)
. (5.19)

The main lesson to learn from this calculation may be that at least in sigma models as the
PSM it is not the best idea to view the parameters of infinitesimal gauge transformations
to live in a pullback bundle. Instead, it is better to view them as living on the product
space of the base and the target manifold.

It is instructive to also consider the H-twisted Poisson sigma model (4.8) from this
perspective. The main difference is that now the condition (2.6) prohibits one to choose
parameters α that are constant in some coordinate system, as it was underlying the above
identification leading e.g. to Equation (5.14). Still, Equation (5.3) and all the general
formalism remains applicable also in this case.

5It was precisely this notational inaccuracy that led to the mistake mentioned in footnote 3.
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We will be more brief now and switch back to the physics notation. Using (2.6), one
may rewrite the second equation of (5.3) according to

δαAi = dtotαi + CjkiαkAj − αi,jF j , (5.20)

where dtot ≡ dΣ + dM , F i ≡ dXi + ΠijAj , and Cjki are the structure functions of the Lie
algebroid T ∗M ∼= D induced by the twisted Poisson Dirac structure D (i.e. induced by the
bracket (4.2) by restriction to the graph of Π):

[dxi, dxj ] =
(

Πij
,k + ΠilΠjmHlmk

)
dxk =: Cijkdx

k . (5.21)

The symmetries of theH-twisted Poisson sigma model in their conventional form, parametrized
by a section ε ∈ Γ(X∗T ∗M), has the form

δεAi = dΣεi + CjkiAjεk +
1

2
εkΠ

klHlijF
j , (5.22)

generalizing the symmetries (5.14) of the ordinary PSM to non-vanishing WZ-term H and,
simultaneously, providing an example of the Lie algebroid based symmetry-considerations
in [9]. As discussed in that paper, both type of symmetries, (5.14) and (5.22), are not M -
covariant, while they can be made to be so by adding a term proportional to F i upon the
usage of an auxiliary connection on T ∗M . This is in contrast to the symmetries in the form
(5.6), which are evidently and inherently covariant. They permit to reproduce (5.22) upon
choosing a coordinate system in which the symmetric part of the derivatives of α vanish,
αi,j + αj,i = 0, while the antisymmetric part remains determined by means of Equation
(2.6).6 Now the point is that while the bracket (4.2) remains stable with respect to the
condition (2.6), it does not respect the condition of symmetrized derivatives to remain zero.
In fact, upon usage of this condition and (2.6) for α and ᾱ, one finds a notable simplification
to occur:7

[α, ᾱ] = Πij
,kαiᾱjdx

k . (5.23)

Note that despite the H-dependence of the structure functions in Equation (5.21), it drops
out from the above combination in the particular frame chosen (the equation is evidently
non-covariant). In this way one obtains the commutator of gauge transformations similarly
to and in generalization of Equation (5.19) to take the form:

[δε, δε̄]Ai = δε̃Ai −
(

Πkl
,ij +

1

2
(ΠkmΠln),(iHj)mn

)
εk ε̄lF

j , (5.24)

where, according to Equation (5.23), ε̃i = Πkl
,iεk ε̄l, and the brackets around the indices

i and j on the r.h.s. denote symmetrization. This equation is not only much more time-
intensive to obtain when starting directly from (5.22), again we see that we can consistently
avoid an open gauge algebra of symmetries by giving up the idea that the symmetries should
be parametrized by sections in a pullback bundle, replacing it with sections on appropriate
product spaces.

6This is possible always in a region of constant rank of dα = ιvH. The resulting formulas work always.
7Note that this condition is certainly not in contradiction to Equation (5.21), since dxi does not satisfy

the condition (2.6) assumed here. Also, a Dirac structure being a Lie algebroid, for general 1-forms α and
ᾱ one may deduce [α, ᾱ] = Cijkαiᾱjdx

k ((ιαΠ)ᾱi − (α↔ ᾱ)) dxi from (5.21), which, for the particular αs
assumed here, can be seen to reduce to the simple expression (5.23) below.
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6 Conclusion and Outlook

We summarize the findings of this paper best in terms of a picture, figure 2 below. It is

T*M

TM

Ai

D

Vi

Aa

Figure 2. Picture summarizing the findings of the present paper: There is a general sigma model
SDSM on a 2d worldsheet Σ defined over the vector bundle morphisms b from TΣ to the “generalized
tangent bundle” TM = TM ⊕ T ∗M . The conventional gauging of a sigma model with WZ-term
is in general obstructed. If it is not, its field content corresponds to a vector bundle morphism
a : TΣ→ E ≡M×g and is equipped with a Lie algebroid morphism µ from E into a Dirac structure
D ⊂ TM such that the gauged model can be obtained as a pullback from SDSM , cf. Equation
(6.2). The Lie algebra based gauge transformation on the l.h.s. translate into geometrical gauge
transformations, based on the Courant-Dorfmann bracket on the r.h.s., cf. Equation (5.6). The
whole picture generalizes also to non-standard gaugings, as shown elsewhere. Only then the action
Lie algebroid E is replaced by a more general Lie algebroid E →M equipped with a connection.

known [10, 11] that a two-dimensional standard sigma model with target metric g which
is invariant under a Lie algebra g, Lvag = 0 for all va = ρ(ea), and with a Wess-Zumino
term (2.5) such that the closed 3-form H permits the choice of a g∗-valued 1-form α = αae

a

satisfying
ιvaH = dαa (6.1)

as well as the Equations (4.6) and (4.7), can be gauged. Given the rigid symmetry conditions
(6.1) to hold true, it is in general not possible to satisfy also these other two equations,
even not upon a redefinition of the 1-forms by means of closed additions; gauging of a
standard sigma model with WZ-term is thus obstructed in general. And, when gauging is
not obstructed, minimal coupling does not give the gauged action functional in general. Let
us call this gauged sigma model Sgauged[Xi, Aa], or, if we view the map X : Σ→M together
with the gauge fields Aaea ∈ Ω1(Σ, g) as a vector bundle morphism a : TΣ → M × g, as
Sgauged[a].
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Whenever the obstructions are absent, the Equations (4.6) and (4.7) ensure that there is
a Lie algebroid morphism µ from the action Lie algebroid E = M×g to a Dirac structure D
inside a split exact Courant algebroid TM ≡ TM⊕T ∗M with 3-form H (or, more generally,
a Lie-Rinehart morphism to D, cf. Appendix A). Moreover, the gauged sigma model can
be obtained from a universal action functional, the Dirac sigma model (3.6), which is
completely independent of any chosen Lie algebra g and, as written, even independent
of the chosen Dirac structure D. Let us make this more explicit: The functional of the
DSM as written in (3.6) can be viewed as a functional on the vector bundle morphisms
b : TΣ→ TM ; we can thus call it SDSM [b].

We remark in parenthesis that the functional (3.6) was considered in [1] in the case
that A and V cannot be chosen independently, but have to combine into A = V ⊕A lying
in a Dirac structure D. In the present perspective, we treat them first as independent. It
is only the map µ : M × g → D ⊂ TM that now selects the Dirac structure (or at least a
Dirac-Rinehart sheaf).

All the details about the Lie algebra g and the choice of αas satisfying the necessary
compatibility conditions are now contained in the map µ, defined by µ(ea) = (va, αa). The
functional SDSM [b] is independent of all this. The restriction of this functional to the image
im(µ) ⊂ D yields the gauging in this picture. In other words,

Sgauged[a] = SDSM [µ ◦ a] . (6.2)

In other words, Sgauged can be viewed as a pullback of SDSM ; more precisely, µ : E → TM
induces a map µ̃ from the map space {a : TΣ → E} to {b : TΣ → TM}. Then simply
Sgauged = µ̃∗SDSM .

As observed rather recently only [6], there are also situations where one can pass to a
gauged version of a given theory even in the absence of an initial symmetry. In the case
of a standard sigma model, one does not need vector fields satisfying an Equation of the
form (2.3); instead, extra terms of a particular form are permitted on the r.h.s. of (2.3).
In general then the gauge fields do not need to be Lie algebra valued, moreover, while still
they combine with the X-fields into a vector bundle morphism such as a in figure 2; only
instead of an action Lie algebroid E = M ×g, there will be a generic Lie algebroid E →M .
The above picture then still remains correct also in this much more general context, as will
be shown in a separate work. Note also that in this context an equation such as Equation
(6.1) does not make sense anymore, but needs to be amended by a connection 1-form on
E for the derivative on the r.h.s. This is in fact the same connection that appears already
in [6]. The analysis then will also provide an explanation for the more elaborate general
gauge symmetries of the Dirac sigma model as provided in [1].

Other evident further questions comprise the generalization of the present picture to
higher dimensions and higher algebroids. Also these subjects shall be addressed elsewhere.
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A Dirac-Rinehart sheaves and extension to Dirac structures

In the main text of this paper, we focused on providing the main picture that for any gauged
standard sigma model with Wess-Zumino term in two spacetime dimensions there is a Lie
algebroid morphism from the action Lie algebroid M × g to the Dirac structure D ⊂ TM ,
cf. Figure 2 above. Still, there are some mathematical subtleties that we want to address in
this Appendix, refining the observation from a more mathematical perspective, to be taken
up in a more profound analysis elsewhere.

First of all, what we really showed only is that by means of the map µ corresponding to
(3.4) we obtain sections ψa ∈ Γ(TM) that are mutually involutive and isotropic, w.r.t. (4.2)
and (4.1), respectively. We can take the C∞(M)-completion of these sections, which,
pointwise, corresponds to taking the vector space generated by ψa(x) inside TMx. However,
it is not clear that this can be always extended into a full Dirac structure. There may be
obstructions for such an extension to exist.

To clarify the situation a bit further, we first provide some definitions.

Definition 1: We call an involutive, isotropic subbundle D of TM a small Dirac struc-
ture. If this bundle has maximal rank, i.e. rkD = dimM , we call D a full Dirac structure
(or simply a Dirac structure). A small/full Dirac structure is regular, if the (integrable)
distribution F induced by the anchor map ρ : TM → TM has constant rank.

Definition 2: We call a sheaf D of C∞-submodules of sections of TM which is stable
under the bracket (4.2) and isotropic with respect to (4.1) a small Dirac-Rinehart sheaf.
If, in addition, D is almost everywhere of maximal rank, it is called a (full) Dirac-Rinehart
sheaf, i.e. for almost each point x ∈ M there exists a neighborhood U 3 x such that
D(U) = Γ(DU ) where DU is a Dirac structure in TU (and on overlaps these local Dirac
structures glue together consistently).

Clearly, any small/full Dirac structure defines a small/full Dirac-Reinhart sheaf, but
not vice versa, in general. The algebraic notion in the second definition is on the one
hand more flexible, on the other hand less suggestive/geometric than the notion in the first
definition. A Dirac-Rinehart structure is an example of a Lie-Rinehart pair [22] in the same
way as a Dirac structure is a particular Lie algebroid.

The map µ mentioned above is thus in fact a Lie-Rinehart morphism from the Lie-
Rinehart pair corresponding to the action Lie algebroid M × g to a small Dirac-Rinehart
sheaf D. The non-trivial mathematical question that one then can pose is if there exists a
Dirac structure D such that D ⊂ Γ(D). While we do not know a general answer to this
question, in the simplest case we do:

Proposition: Any small Dirac structure Ds can be canonically extended into a full
Dirac Rinehart sheaf. If Ds is regular, moreover, it can be canonically extended into a full
Dirac structure D.

– 19 –



Proof: We first consider the case of a regular small Dirac structure Ds. It comes with
the following exact sequence of vector bundles, induced by the anchor map ρ (restricted
from TM to Ds):

0→ ker ρ→ Ds → F → 0 .

As a consequence of the isotropy of Ds one also has ker ρ ⊂ ann(F ) ⊂ T ∗M , where ann(F )

is the annihilator of F . Now we define D := ann(F ) +Ds. By construction, the subbundle
D has the same rank as TM , and it is obviously isotropic. Moreover, one can easily show
that D is also closed under the Courant bracket. Indeed, the Courant bracket of two
sections of ann(F ) clearly vanishes, while the bracket of a section (v1, α1) of Ds with the
section (0, β) of ann(F ) gives [(v1, α1), (0, β)] = (0,Lv1β). Since for any v2 ∈ Im(ρ) one has
ιv2Lv1β = [ιv2 ,Lv1 ]β = ι[v2,v1]β = 0, the section (0,Lv1β) is again in ann(F ) (thus ann(F )

is an ideal in D and D is closed under the Courant bracket). On the other hand, Ds ⊂ D,
so this provides a (canonical) extension of the small Dirac structure Ds to the full Dirac
structure D.

Given that for any small Dirac structure Ds the corresponding distribution F = ρ(Ds)

is almost everywhere of constant rank, it is obvious that eachDs can be canonically extended
to a Dirac-Rinehart structure by adding to the space of local sections ofDs all local 1−forms
vanishing on F . This completes the proof. �
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