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Abstract: We introduce a new topological sigma model, whose fields are bundle maps
from the tangent bundle of a 2-dimensional world-sheet to a Dirac subbundle of an exact
Courant algebroid over a target manifold. It generalizes simultaneously the (twisted)
Poisson sigma model as well as the G/G-WZW model. The equations of motion are
satisfied, iff the corresponding classical field is a Lie algebroid morphism. The Dirac
Sigma Model has an inherently topological part as well as a kinetic term which uses
a metric on worldsheet and target. The latter contribution serves as a kind of regula-
tor for the theory, while at least classically the gauge invariant content turns out to be
independent of any additional structure. In the (twisted) Poisson case one may drop the
kinetic term altogether, obtaining the WZ-Poisson sigma model; in general, however, it
is compulsory for establishing the morphism property.
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1. Introduction

In this paper we introduce a new kind of two-dimensional topological sigma model which
generalizes simultaneously the Poisson Sigma Model (PSM) [27, 15, 16] and the G/G
WZW model [11, 12] and which corresponds to general Dirac structures [8, 22] (in exact
Courant algebroids). Dirac structures include Poisson and presymplectic structures as
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particular cases. They are dimM-dimensional subbundles D of E := T ∗M ⊕ TM sat-
isfying some particular properties recalled in the body of the paper below. If one regards
the graph of a contravariant 2-tensor P ∈ �(TM⊗2) viewed as a map from T ∗M to
TM , then D = graph P turns out to be a Dirac structure if and only if P is a Poisson
bivector (i.e. {f, g} := P(df, dg), f, g ∈ C∞(M), defines a Poisson bracket on M).
Likewise,D := graphω, where ω is a covariant 2-tensor viewed as a map TM → T ∗M
is a Dirac structure, iff ω is a closed 2-form.

More generally, the above construction is twisted by a closed 3-formH , and in addi-
tion not any Dirac structure can be written as a graph from T ∗M to TM or vice versa.
This is already true for a Dirac structure that can be defined canonically on any semi-
simple Lie group G and which turns out to govern the G/G-WZW model. Only after
cutting out some regions in the target G of this σ -model, the Dirac structure D is the
graph of a bivector and the G/G model can be cast into the form of a (twisted) PSM
[3, 10]. The new topological sigma model we are suggesting, the Dirac Sigma Model
(DSM), works for an arbitrary Dirac structure.

We remark parenthetically that also generalized complex structures, which lately have
received increased attention in string theory, fit into the framework of Dirac structures. In
this case one regards the complexification ofE and, as an additional condition, the Dirac
structure D called a “generalized complex structure” needs to have trivial intersection
with its complex conjugate. The focus of this text is on real E, but we intend to present
an adaptation separately (for related work cf. also [35, 21, 4]).

As is well-known, the quantization of the PSM yields the quantization of Pois-
son manifolds [18, 6] (cf. also [26]). In particular, the perturbative treatment yields
the Kontsevich formula. The reduced phase space of the PSM on a strip carries the
structure of a symplectic groupoid integrating the chosen Poisson Lie algebroid [7].
One may expect to obtain similar relations for the more general DSM. Also, several
two-dimensional field theories of physical interest were cast into the form of par-
ticular PSMs [27, 17, 30, 14] and thus new efficient tools for their analysis were
accessible. The more general DSMs should permit to enlarge this class of physics
models.

The definition of the DSM requires some auxiliary structures. In particular one needs
a metric g and h on the target manifold M and on the base or worldsheet manifold �,
respectively. The action of the DSM consists of two parts, SDSM = Stop + Skin, where
only the “kinetic” term Skin depends on g and h. IfD = graph P , Skin may be dropped, at
least classically, in which case one recovers the PSM (or its relative, twisted by a closed
3-form, the WZ-Poisson Sigma Model). We conjecture that for what concerns the gauge
invariant information captured in the model on the classical level one may always drop
Skin in SDSM—and for� ∼= S1 ×R we proved this, cf. Theorem 4 below. Still, even clas-
sically, it plays an important role, serving as a kind of regulator for the otherwise less well
behaved topological theory. E.g., in general, it is only the presence of Skin which ensures
that the field equations of SDSM receive the mathematically appealing interpretation of
Lie algebroid morphisms from T� to the chosen Dirac structureD—in generalization of
an observation for the PSM [5]. (We will recall these notions in the body of the paper, but
mention already here that T� as well as any Dirac structure canonically carry a Lie al-
gebroid structure). Without Skin, the solutions of the Euler Lagrange equations constrain
the fields less in general, which then seems to be balanced by additional gauge symme-
tries broken by Skin. These additional symmetries can be difficult to handle mathemati-
cally, since in part they are supported on lower dimensional regions in the target of the
σ -model.
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The paper is organized as follows: In Sect. 2 we use the G/G model as a starting point
for deriving the new sigma model. This is done by rewriting the G/G-WZW model in
terms suitable for a generalization. By construction, the generalization will be such that
the PSM is included, up to Skin, as mentioned above. The role of the Poisson bivector
P in the PSM is now taken by an orthogonal operator O on TM , which in the Poisson
case is related to P by a Cayley transform, but which works in the general case.

In Sect. 3 we provide the mathematical background that is necessary for a correct
interpretation of the structures defining the general sigma model. This turns out to be the
realm of Courant algebroids and Dirac structures. We recapitulate definitions and facts
known in the mathematics literature, but also original results, developed to address the
needs of the sigma model, are contained in this section. The action of the Dirac sigma
model is then recognized as a particular functional on the space of vector bundle mor-
phisms φ : T� → D, SDSM = SDSM[φ]. Specializing this to the PSM, one reproduces
the usual fields φ̃ : T� → T ∗M , since precisely in this case D is isomorphic to T ∗M .

In Sect. 4 we point out that the definition of the DSM presented in the preceding
sections also depends implicitly on some further auxiliary structure in addition to the
chosen Dirac structure D ⊂ E, namely on a “splitting” in the exact Courant algebroid
0 → T ∗M → E → TM → 0. This dependence occurs in Stop, but again at the end of
the day, the “physics” will not be affected by it.

In Sect. 5 we derive the field equations of SDSM, which we present in an inherently
covariant way. We also prove that φ solves the field equation, iff it respects the canonical
Lie algebroid structures of T� and the Dirac structure D, i.e. iff φ : T� → D is a Lie
algebroid morphism. We present one possible covariant (global and frame independent)
form of the gauge symmetries of SDSM, furthermore, using the connection onM induced
by the auxiliary metric g. We will, however, postpone the corresponding proof of the
gauge invariance and further interpretations to another work [20], where the question
of covariant gauge symmetries will be addressed in a more general framework of Lie
algebroid theories, for which the DSM serves as one possible example. There we will
also relate these symmetries to the more standard presentations of the symmetries of the
G/G model and the (WZ-)PSM.

In Sect. 6, finally, which in most parts can be read also directly after Sect. 2, we
determine the Hamiltonian structure of the DSM. In fact, we will do so even for a some-
what more general sigma model, where the target subbundle D ⊂ E is not necessarily
required to be integrable. It turns out that the constraints of this model are of the form
introduced recently in [2], where now currents J are associated to any sectionψ ∈ �(D).
As a consequence of the general considerations in [2], the constraints Jψ = 0 are found
to be first class, iff D is integrable, i.e. iff it is a Dirac structure.

2. From G/G to Dirac Sigma Models

We will use the G/G-WZW-model [11, 12] as a guide to the new sigma model that is
attached to any Dirac structure. Given a Lie group G with quadratic Lie algebra g and a
closed 2-manifold� equipped with some metric h, which we assume to be of Lorentzian
signature for simplicity, the (multivalued) action functional of the WZW-model consists
of two parts (cf. [33] for further details): a kinetic term for G-valued fields g(x) on� 	 x
as well as a Wess-Zumino term SWZ, requiring the (non-unique) extension of im� ⊂ G
to a 3-manifold N3 ⊂ G such that ∂N3 = im�:

SWZW[g] = k

4π

∫

�

〈∂+gg−1, ∂−gg−1〉 dx− ∧ dx+ + SWZ, (1)
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SWZ[g] = k

12π

∫

N3

〈dgg−1 ∧, (dgg−1)∧2〉 , (2)

where x+, x− are lightcone coordinates on � (i.e. h = ρ(x+, x−) dx+dx− for some
locally defined positive function ρ), 〈·, ·〉 denotes the Ad-invariant scalar product on g,
and k is an integer multiple of � (which implies that the exponent of i

�
SWZW, the inte-

grand in a path integral, is a unique functional of g : � → G). Introducing a connection
1-form a on � with values in a Lie subalgebra h < g, one can lift the obvious rigid
gauge invariance of (1) w.r.t. g → Adhg ≡ hgh−1, h ∈ H < G, to a local one (h = h(x)
arbitrary, a → hdh−1 + Adha) by adding to SWZW,

Sgauge[g, a] = k

2π

∫
�

(
〈a+, ∂−gg−1〉 − 〈a−, g−1∂+g〉 + 〈a+, a−〉

−〈a+, ga−g−1〉
)

d2x , (3)

where d2x ≡ dx− ∧ dx+. For the maximal choice H = G this yields the G/G-model:

SG/G[g, a] = SWZW[g] + Sgauge[g, a] . (4)

In [3] it was shown that on the Gauss decomposable part GGauss of G (for SU(2) this
is all of the 3-sphere except for a 2-sphere) the action (4) can be replaced equivalently
by a Poisson Sigma Model (PSM) with target GGauss. (This was re-derived in a more
covariant form in [10]). It is easy to see that by similar manipulations—and in what
follows we will demonstrate this by a slightly different procedure—(4) can be cast into
a WZ-PSM [16] on G1 := G\G0, where G0 = {g ∈ G| ker(1 + Adg) �= {0}} (again a
2-sphere for SU(2)). The question may arise, if there do not exist possibly some other
manipulations that can cast the G/G-model into the form of a WZ-PSM globally, with
a 3-formH of the same cohomology as the Cartan 3-form (the integrand of (2)). In fact
this is not possible: it may be shown [1] that there is a cohomological obstruction for
writing the Dirac structure which governs the G/G-model and which is disclosed below
(the Cartan-Dirac structure, cf. Example 3 below) globally as a graph of a bivector. Con-
sequently, this calls for a new type of topological sigma model that can be associated
to any Dirac structure D (in an exact Courant algebroid) such that it specializes to the
WZ-PSM if D may be represented as the graph of a bivector and e.g. to the G/G model
if the target M is chosen to be G and D the Cartan-Dirac structure.1

Vice versa, the G/G model already provides a possible realization of the sought-after
sigma model for this particular choice of M and D. We will thus use it to derive the
new sigma model within this section. For this purpose it turns out to be profitable to
rewrite (4) in the language of differential forms, so that the dependence on the world-
sheet metric h becomes more transparent; for simplicity we put k = 4π in what follows
(corresponding to a particular choice of �). We then find

SG/G = 1

2

∫

�

〈dgg−1 ∧, ∗dgg−1〉 + SWZ +
∫

�

〈a ∧, ∗a〉 − 〈a ∧, Adg(∗ − 1)a〉 (5)

+
∫

�

〈a ∧, (∗ − 1)dgg−1〉 − 〈Adga
∧, (∗ + 1)dgg−1〉 . (6)

1 We remark parenthetically that in an Appendix in [3] it was shown that the G/G model can be repre-
sented on all of G as what we would call these days a WZ-PSM, but this was at the expense of permitting
a distributional 3-form H (the support of which was on G\GGauss). The above mentioned topological
obstruction relies on the smooth category.
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Here our conventions for the Hodge dual operator ∗, which is the only place where h
enters, is such that ∗dx± = ±dx±. Now we split SG/G into terms containing ∗ and those
which do not. One finds that the first type of terms combines into a total square and that

SG/G[g, a] = Skin + Stop, (7)

Skin = 1

2

∫
�

||dgg−1 + (1 − Adg)a||2, (8)

Stop =
∫
�

〈−(1 + Adg)a
∧, dgg−1〉 + 〈a ∧, Adga〉 + SWZ, (9)

where for a Lie algebra valued 1-form β we use the notation ||β||2 ≡ 〈β ∧, ∗β〉.
Before generalizing this form of the action, we show that G/G can be cast into the

form of a WZ-PSM (or HPSM for a given choice ofH ) on G1. For this purpose we briefly
recall the action functional of the WZ-PSM [16] (cf. also [24]): Given a closed 3-form
H and a bivector field P = 1

2P ij (X) ∂i ∧ ∂j on a target manifold M one considers

SHPSM[X,A] =
∫
�

Ai ∧ dXi + 1
2P ijAi ∧ Aj +

∫
N3

H , (10)

where X : � → M and A ∈ �(T ∗� ⊗ X∗T ∗M) and the last term is again a WZ-term
(i.e. N3 ⊂ M is chosen such that its boundary agrees with the image of X and the usual
remarks about multi-valuedness of the functional can be made)2; for the case that H =
dB the latter contribution can be replaced by (the single-valued)

∫
�

1
2Bij dXi ∧ dXj .

This kind of theory is topological (has a finite dimensional moduli space of classical
solutions modulo gauge transformations) iff the couple (P, H) satisfies a generalization
of the Jacobi-identity, namely

P il∂lPjk + cycl(ijk) = Hi′j ′k′ P i′iPj ′jPk′k ; (11)

(P, H) then defines a WZ-Poisson structure on M (also called “twisted Poisson” or
“H -Poisson” or “Poisson with background” in the literature).

We now want to show that when restricting g to maps g: � → G1, the action SG/G
can be replaced by (10) for a particular choice of P andH , at least for what concerns the
classical field equations. Let us consider the variation of the two contributions to SG/G
in (4) with respect to a separately:

−Adg
δSkin

δa
= (1 − Adg) ∗

[
dgg−1 + (1 − Adg)a

]
, (12)

−Adg
δStop

δa
= (1 + Adg)

[
dgg−1 + (1 − Adg)a

]
. (13)

2 In particular, assume that � has no boundary and is orientable. Assume furthermore that H2(M) is
trivial and that [H ] ∈ H 3(M, 2π�Z). Then one can give meaning to the exponential of iSHPSM[X,A]/�,
which is the integrand of a “path integral”: Choose any (possibly degenerate) 3-manifold N3 ⊂ M with
boundary im(X) to perform the integral. Note that the result iSHPSM[X,A]/� does not only depend on the
cohomology class ofH , but also the representative. For the field equations of such a “functional” SHPSM,
H need not have integral cycles, moreover, and we may drop the conditions [H ] ∈ H 3(M, 2π�Z) and
H2(M) = 0, since only infinitesimal variations are needed. Likewise, a Hamiltonian formulation exists
for any closed H, cf. Sect. 6. If � has a boundary, additional data need to be specified on “D-branes” in
M; for the corresponding Hamiltonian formulation, cf. e.g. [2].
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Decomposing the term in the square bracket into its ±1 eigenvalues of ∗ (use projectors
1
2 (1 ± ∗) or, equivalently, consider the dx+ and dx− components of (13)), it is easy to
see that δSG/G/δa = 0 yields

dgg−1 + (1 − Adg)a = 0 . (14)

On the other hand, as obvious from (13), this equation is also obtained from Stop on
G1. Since Skin is quadratic in the left-hand side of (14), it gives no contribution to the
variation of SG/G w.r.t. g, which proves the desired equivalence.

For completeness we remark that the second field equation is nothing but the zero
curvature condition3

F ≡ da + a ∧ a = 0 , (15)

and that this equation results from variation of Stop w.r.t. g even on all of G. Note however
that Stop will have solutions mapping into G0 = G\G1 violating (14).

It thus remains to cast Stop into the form (10). On G1 this is done most easily by intro-
ducingA := −(1+Adg)a, where the matrix components of this 1-form correspond to a
right-invariant basis of T ∗G (note also that sections of T ∗G and TG, 1-forms and vector
fields on the group, can be identified by means of the Killing metric); then the first term
in (9) already takes the form of the first term in (10). The WZ-terms can be identified
without any manipulations. It remains to calculate the bivector upon comparison of the
respective second terms. A very simple calculation then yields

P = 1 − Adg

1 + Adg
, H = 1

3
〈dgg−1 ∧, (dgg−1)∧2〉 , (16)

where P refers to a right-invariant basis on G again andH is the Cartan 3-form. In [29]
it was shown that the WZ-Poisson structures [16] are particular Dirac structures; and
the utility of this reformulation was stressed due to the simplification of checking (11)
for the above example. We want to use the opportunity to stress the usefulness of sigma
models in this context (cf. also [31]): Using the well-known fact that the G/G model
is topological (in the sense defined above) and that one can cast it into the form (10)
is already sufficient to establish (11) for (16); even more, the above consideration is a
possible route for finding this example of a WZ-Poisson or Dirac structure. The above
bivector also plays a role in the context of D-branes in the WZW-model.

We now come to the generalization of the G/G model written in the form (7). For
this purpose we first rewrite (10) into a form more suitable to the language of Dirac
structures. It is described as the graph of the bivector P in the bundleE = T ∗M⊕TM ,
i.e. as pairs (α,P(α, ·)) for any α ∈ T ∗M . With the 1-formsA taking values in T ∗M we
thus may introduce the dependent 1-form V = P(A, ·) taking values in TM . Together
they may be viewed as a 1-form A = A ⊕ V on � taking values in the subbundle
D = graph(P) ⊂ E. Then (10) can be rewritten as

Stop[X,A] =
∫
�

Ai ∧ dXi − 1
2Ai ∧ V i +

∫
N3

H. (17)

Comparison with (9) shows that in the G/G-model Aα = − [(1 + Adg)a
]
α

, where α
is an index referring to a right-invariant basis on G. Correspondingly, we can read off
by comparison of (9) with (17) that then V α = − [(1 − Adg)a

]α (showing equality is
3 Written in a matrix representation. More generally, F ≡ da + 1

2 [a ∧, a].
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a simple exercise where one uses that Adg is an orthogonal operator w.r.t. the Killing
metric). Note that in the formulation (17) no metric onM appears anymore; the Killing
metric is used only in the above identification.

The G/G-model also contains a second part, which uses a metric h on � as well as a
metric g on M . From the above identification it is easy to generalize it:

Skin[X,A] = α

2

∫
�

||dX − V ||2 , (18)

where for any TM-valued 1-form f = f i∂i = f iµdxµ ⊗ ∂i on � we use

||f ||2 := g(f ∧, ∗f ) ≡ gij h
µνf iµf

j
ν vol� , vol� ≡ √

det(hµν)d
2x , (19)

and where α is some coupling constant. For the action functional of the Dirac Sigma
Model (DSM) we thus postulate SDSM[X,A] := Skin + Stop, i.e.

SDSM[X,A⊕ V ] = α

2

∫
�

||dX − V ||2 +
∫
�

Ai ∧ dXi − 1
2Ai ∧ V i +

∫
N3

H . (20)

As already mentioned above, the 1-forms A ≡ A ⊕ V take value in X∗D, where D
is a Dirac structure; this will be made more precise and explicit below. For Lorentzian
signature metrics h on�, α should be real and (preferably) non-vanishing; for Euclidean
signatures of hwe need an imaginary unit as a relative factor between the kinetic and the
topological term. Although possibly unconventional, we will include it in the coupling
constant α in front of the kinetic term, so that we are able to cover all possible signatures
in one and the same action functional. If g has an indefinite signature, on the other hand,
we in addition need to restrict to a neighborhood of the original value α = 1 (or α = i

for Euclidean h); the condition we want to be fulfilled is the invertibility of the operator
(42) below (cf. also the text following Corollary 2).

The metrics h and g on � and M , respectively, are of auxiliary nature. First of all, it
is easy to see that Skin gives no contribution to the field equations for what concerns the
WZ-PSM (10); also the gauge symmetries are modified only slightly by some on-shell
vanishing, and thus physically irrelevant contribution (both statements will be proven
explicitly in subsequent sections). Let us consider the other extreme case of a Dirac
structure provided by the subbundleD = TM to E = T ∗M ⊕ TM (forH being zero):
In this case A ≡ 0 and V = V i∂i is an unconstrained 1-form field. Obviously in this
case Stop ≡ 0 and one obtains no field equations from this action alone. On the other
hand, the field equations from Skin are computed easily as

dXi = V i . (21)

First we note that this equation does not depend either on h or on g; these two struc-
tures are of auxiliary nature for obtaining a nontrivial field equation in this case, a fact
that will be proven also for the general case in the subsequent section (cf. Theorem 1
below). Secondly, we observe that at the end of the day even in this case the two the-
ories Stop[X,A] ≡ 0 and SDSM[X,A] ≡ Skin[X,V ] are still not so different as one
may expect at first sight: The moduli space of classical solutions is the same for both
theories. The lack of field equations in the first case is compensated precisely in the
correct way by additional gauge symmetries, that are absent for Skin[X,V ]. If we per-
mit as gauge symmetries those that are in the connected component of unity, we find
the homotopy classes [X] of X : � → M as the only physically relevant information.
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(Gauge identification of different homotopy classes might be considered as large gauge
transformations, as both action functionals remain unchanged in value; then the moduli
space would be just a point in each case).

One may speculate that this mechanism of equivalent moduli spaces occurs also in
the general situation. We leave this as a conjecture for a general choice of �, proving it
in the case of � = S1 × R, where we will establish equivalent Hamiltonian structures
(cf. Sect. 6 below). We remark, however, that the equivalence may require some slightly
generalized notion of gauge symmetries similar to the λ-symmetry discussed in [32];
this comes transparent already from the G/G example, where the additional classical
solutions found above, which are located at regions in G where the kernel of 1 + Adg is
nontrivial, need to be gauge identified by additional gauge symmetries of Stop that are
concentrated at the same region in G.

Note that this complication disappears when Skin is added to Stop. Likewise, the field
equations (21) have a nice mathematical interpretation; they are equivalent to the state-
ment that the fields (X,A) are in one-to-one correspondence with morphisms from T�

to D, both regarded as Lie algebroids (cf. Theorem 1 below). So, the addition of Skin
(with non-vanishing α) serves as a kind of regulator for the theory, making it mathemat-
ically more transparent and more tractable–while simultaneously the “physics” (moduli
space of solutions) seems to remain unchanged in both cases, α = 0 and α �= 0.

Having an auxiliary metric g on M at one’s disposal, it may profitably be used to
reformulate Stop. In particular, it will turn out that one may use it to parameterize the
Dirac structure globally in terms of an orthogonal operator O : TM → TM (cf. Propo-
sition 1 below), generalizing the operator Adg on M = G in the G/G model above; this
then permits one to use unrestricted fields for the action functional again, such as g and
a in the G/G model and X and A in the WZ-PSM.

Essentially, this works as follows: By means of g we may identify T ∗M with TM , so
E ∼= TM ⊕ TM and the parts A and V of A = A⊕ V may be viewed both as (1-form
valued) vector (or covector) fields on M (corresponding to the index position, where
indices are raised and lowered by means of g). Introducing the involution τ : E → E

that exchanges both copies of TM , τ(α ⊕ v) = v ⊕ α, let us consider its eigenvalue
subbundles E± = {(v ⊕ ±v) , v ∈ TM}, both of which can be identified with TM
by projection to the first factor T ∗M ∼= TM . It turns out (cf. Proposition 1 below) that
any Dirac structure D ⊂ E can be regarded as the graph of a map from E+ → E−,
which, by the above identifications, corresponds to a (point-wise) map O from TM to
itself. Let us denote theE+ andE− decomposition of an element ofE as (v1; v2), where
elements vi may be regarded as vectors on M . Then any Dirac structure can be written
as D = {(v; Ov) ∈ E, v ∈ TM}, where O is point-wise orthogonal w.r.t. the metric g.
Obviously, (v; Ov) = (1 + O)v ⊕ (1 − O)v ∈ TM ⊕ TM ∼= T ∗M ⊕ TM = E; thus
e.g. the graph D = graph(P) of a bivector field P , D = {α ⊕ P(α, ·), α ∈ T ∗M} ⊂ E

corresponds to the orthogonal operator

O = 1 − P
1 + P ⇔ P = 1 − O

1 + O . (22)

Note that in a slight abuse of notation we did not distinguish between the bivector field
P = 1

2P ij ∂i ∧ ∂i ∈ �(�2TM), the canonically induced map from T ∗M → TM ,
α → P(α, ·), and the corresponding operator on TM using the isomorphism induced
by g: TM 	 v → P(g(v, ·), ·) ∈ TM; in particular this implies that in an explicit
matrix calculation using some local basis ∂i in TM , with O = Oi

j ∂i ⊗ dXi , the matrix

denoted by P in (22) is Pi j ≡ gikPkj .
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Obviously the Dirac structure of the G/G model corresponds to the choice Adg for O
above and the first formula (16) is the specialization of (22) to this particular case. The
transformation (22) is a Cayley map. Although any antisymmetric matrix P yields an
orthogonal matrix O by this transformation, the reverse is not true. This is the advantage
of using O over P , as it works for any Dirac structure.4 Certainly such as the bivector of
WZ-Poisson structure has to satisfy an integrability condition, namely Eq. (11), which
for H = 0 states that P defines a Poisson structure. There is a likewise condition to be
satisfied by Oi

j (X) so that, more generally, O describes a Dirac structure. O corresponds
to a Dirac structure iff U := 1 − O satisfies (cf. Proposition 2 below):

UĩiU
j̃
j ;ĩ (1 − U)

j̃k
+ cycl(i, j, k) = 1

2Hĩj̃ k̃U
ĩ
iU

j̃
jU

k̃
k . (23)

Here the semicolon denotes the covariant derivative with respect to the Levi Civita con-
nection of g. Locally it may be replaced by an ordinary partial derivative, if the auxiliary
metric is chosen to be flat on some coordinate patch.

Having characterizedD by O ∈ �(O(TM)), we may parameterize A ∈ �(�,X∗D)
more explicitly by a = ai∂i ∈ �(�,X∗TM) according to A = −(1+O)a⊕−(1−O)a.

Then the total action (20) can be rewritten in the form

SDSM[X, a] = α

2

∫

�

||dX + (1 − O)a||2 +
∫

�

g(dX ∧, (1 + O)a)+ g(a ∧, Oa)+
∫

N3

H

≡ α

2

∫

�

(dXi + ai − Oi
ka
k) ∧ ∗(dXj + aj − Oj

ma
m) gij (24)

+
∫

�

dXi ∧ aj (gij + Oij )+ Oij a
i ∧ aj +

∫

N3

H,

where nowXi and ai , local 0-forms and 1-forms on�, respectively, can be varied with-
out any constraints and indices are lowered and raised by means of gij (X) and gij (X),
respectively. We stress again that the g-dependence of the last line is ostensible only,
whereas the α-dependent terms depend on it inherently.

The above presentation of A was suggested by the G/G model. In the rest of the
paper we will however rather use the slightly more elegant parameterization A = (1 +
O)a ⊕ (1 − O)a, resulting from a := −a. In these variables the action (24) takes the
form

SDSM[X, a] = α

2

∫

�

||f ||2 +
∫

�

g((1 + O)a ∧, dX)+ g(a ∧, Oa)+
∫

N3

H, (25)

where we used (19) with

f ≡ dX − V ≡ dX − (1 − O)a . (26)

In the following sections we will tie the above formulas to a more mathematical
framework and, among others, analyze the field equations from this perspective. Read-
ers more interested in applications for physics may also be content with consulting only

4 This observation is due to the collaboration of A.K. and T.S. with A. Alekseev and elaborated further
in [1]. We are also grateful to A. Weinstein for pointing out to us that the description of Dirac structures
by means of sections of O(TM) was used already in the original work [8].
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the main results from the following sections, in particular Theorem 1 and Proposition 7,
and then turn directly to the Hamiltonian analysis of the action in Sect. 6.

Maybe also noteworthy is the generalization Eq. (44) of the kinetic term introduced
in Sect. 4 below. The modification of the old kinetic term uses a 2-form C on the target
and is independent of any metric. Such a generalized kinetic term is suggested by the
more mathematical considerations to follow, but will not be pursued any further within
the present paper.

We close this section with a continuative remark: As mentioned above, for
non-vanishing parameter α, the classical theory will turn out not to depend on this
parameter. It is tempting to believe that this property can be verified also on the quantum
level, a change in α corresponding to the addition of a BRS-exact term. In this context
it may be interesting to regard the limit α → ∞, yielding localization to f = 0. In fact,
one may expect localization of the path integral to all equations of motion, cf. [34, 13].

3. Dirac Structures

The purpose of this section is to provide readers with the mathematical background for
the structures used to define the Dirac sigma model. We review some basic facts about
Dirac structures, being maximally isotropic (Lagrangian) subbundles in an exact Cou-
rant algebroid, the restriction of the Courant bracket to which is closed. We describe an
explicit isomorphism between the variety of all Lagrangian subbundles and the group of
point-wise acting operators in the tangent bundles, orthogonal with respect to a fixed Rie-
mann metric. We derive an obstruction for such operators to represent a Dirac structure,
cf. Proposition 2 below.

A Courant algebroid [22, 8] is a vector bundle E equipped with a non-degenerate
symmetric bilinear form 〈, 〉, a bilinear operation ◦ on �(E) (sometimes also denoted as
a bracket [·, ·]), and a bundle map ρ : E → TM satisfying the following properties:

1. The left Jacobi condition e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3 + e2 ◦ (e1 ◦ e3),
2. Representation ρ(e1 ◦ e2) = [ρ(e1), ρ(e2)],
3. Leibniz rule e1 ◦ f e2 = f e1 ◦ e2 + Lρ(e1)(f )e2,
4. e ◦ e = 1

2D〈e, e〉,
5. Ad-invariance ρ(e1)〈e2, e3〉 = 〈e1 ◦ e2, e3〉 + 〈e2, e1 ◦ e3〉,

where D is defined as D : C∞(M) d→ �1(M)
ρ∗
→ E∗ � E. Properties 2 and 3 can

be shown to follow from the other three properties, which thus may serve as axioms
(cf. e.g. [19]). A Courant algebroid is called exact [28], if the following sequence is
exact:

0 → T ∗M
ρ∗
→ E

ρ→ TM → 0. (27)

A Dirac structureD in an exact Courant algebroid is a maximally isotropic (or Lagrang-
ian) subbundle with respect to the scalar product, which is closed under the product. A
Dirac structure is always a particular Lie algebroid: By definition a Lie algebroid is a
vector bundle F → M together with a bundle map ρ : F → TM and an antisymmetric
product (bracket) between its sections satisfying the first three properties in the list above
(where again the second property can be derived from the other two). In particular, the
product, often also denoted as a bracket, e1 ◦ e2 :≡ [e1, e2], defines an infinite dimen-
sional Lie algebra structure on �(F). Due to the isotropy of D, the induced product
(bracket) becomes skew-symmetric and obviously D is a Lie algebroid.
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From now on we will only consider exact Courant algebroids (27). Let us choose a
“connection” on E, i.e. an isotropic splitting σ : TM → E, ρ ◦ σ = id. The difference

σ(X) ◦ σ(Y )− σ([X, Y ]) = ρ∗H(X, Y ) (28)

is a pull-back of a C∞(M)−linear, completely skew-symmetric tensor H ∈ �3(M),
given byH(X, Y,Z) = 〈σ(X) ◦ σ(Y ), σ (Z)〉. From the above axioms one may deduce
the “Bianchi identity”: dH = 0.

Once a connection is chosen, any other one differs by the graph of a 2−form B.
Its curvature is equal to H + dB. Therefore the cohomology class [H ] ∈ H 3(M) is
completely determined by the Courant algebroid [28].

Choosing a splitting with the curvature 3-form H , it is possible to identify the cor-
responding exact Courant algebroid with T ∗M ⊕ TM and the scalar product with the
natural one:

〈ξ1 + θ1, ξ2 + θ2〉 = θ1(ξ2)+ θ2(ξ1) , (29)

where ξi ∈ �(TM), θi ∈ �1(M). Finally, the multiplication law can be shown to take
the form:

(ξ1 + θ1) ◦ (ξ2 + θ2) = [ξ1, ξ2] + Lξ1θ2 − ıξ2 dθ1 +H(ξ1, ξ2, ·) , (30)

where Lξ and iξ denote the Lie derivative along a vector field ξ and contraction with ξ ,
respectively.

Let E be an exact Courant algebroid with a chosen splitting E = T ∗M ⊕ TM and
a vanishing 3-form curvature (this implies that the chacteristic 3-class of E is trivial).
Then we have:

Example 1. Let D be a graph of a Poisson bivector field P ∈ �(�2TM) considered as
a skew-symmetric map from T ∗M to TM , then D = {θ ⊕ P(θ)} is a Dirac subbundle
and the projection fromD to T ∗M is bijective. Any Dirac subbundle ofE with bijective
projection to T ∗M is a graph of a Poisson bivector field.

Example 2. Let D be a graph of a closed 2−form ω ∈ �2(M) considered as a skew-
symmetric map from TM to T ∗M , then D = {ω(v)⊕ v} is a Dirac subbundle and the
projection of D to TM is bijective. Any Dirac subbundle of E for which the projection
to TM is bijective is a graph of a closed 2−form.

IfE has a non-trivial characteristic class [H ], one needs to replace the Poisson (presym-
plectic) structure by a corresponding WZ (or twisted) one, cf. [16, 29].

Now we describe all Lagrangian subbundles of an exact Courant algebroid E, which
are not necessarily projectable, either to T ∗M (for any splitting σ ) or to TM .5 Let
us choose an arbitrary Riemannian metric g on M , which can be thought of as a
non-degenerate symmetric map from TM to T ∗M . The inverse of g is acting from
T ∗M to TM . We denote these actions as ξ → ξ∗ and θ → θ∗ for a vector field ξ and a
1-form θ , respectively. In some local coordinate chart it can be written as follows:

ξ∗ =
(
ξ i∂i

)∗ = ξ igijdxj , θ∗ =
(
θidx

i
)∗ = θig

ij ∂j . (31)

5 At least most of the rest of the section seems to be original, taking into account, however, the previous
footnote for what concerns Proposition 1 below.
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Given a splitting σ , one can combine these maps to a bundle involution τ : E → E,
θ ⊕ ξ → ξ∗ ⊕ θ∗, with the obvious property τ 2 ≡ 1. To simplify the notation, we will
henceforth just write θ+ξ instead of θ⊕ξ , because the nature of θ and ξ anyway indicate
the position in E ∼= T ∗M ⊕ TM . The bundle E thus decomposes into ±1−eigenvalue
parts, E = E+ ⊕ E−, where E± := Ker(τ ∓ 1).

Proposition 1. Any Lagrangian subbundle is a graph of an orthogonal mapE+ → E−,
which can be identified with a section O ∈ �(O(TM)).
Proof. First, let us show that τ is symmetric with respect to 〈, 〉. In fact, by the definition
of the scalar product (29) and τ we have

〈τ(ξ1 + θ1), ξ2 + θ2〉 = 〈θ2, θ
∗
1 〉 + 〈ξ∗

1 , ξ2〉 = g(ξ1, ξ2)+ g(θ1, θ2) .

Now it is easy to see that the restriction of 〈, 〉 toE+ (E−) is a positive (negative) metric,
respectively, and 〈E+, E−〉 ≡ 0. Therefore we conclude that any Lagrangian subbundle
has a trivial intersection with E±. Hence the projection of D to E+ is bijective which
implies that D is a graph of some map E+ → E−. Let us identify E± with TM by
means of ±ρ, then the map uniquely corresponds to an orthogonal transformation O of
TM . More precisely, any section u± of E± can be uniquely represented as ξ ± ξ∗ for
some vector field ξ . Now the definition of O yields that any section of D has the form
(1−O)ξ+ ((1+O)ξ)∗ for a certain vector field ξ . Taking into account that 〈, 〉 vanishes
on D, we show that O is an orthogonal map:

〈(1 − O)ξ + ((1 + O)ξ)∗, (1 − O)ξ ′ + ((1 + O)ξ ′)∗〉
= g((1−O)ξ, (1+O)ξ ′)+ g((1+O)ξ, (1−O)ξ ′) = 2(ξ, ξ ′)− 2g(Oξ,Oξ ′) = 0.

��
For the argumentation above, in particular for the fact thatD has a trivial intersection

with E±, it was important that g is a metric of definite signature. Note, however, that
even when g is an arbitrary pseudo-Riemannian metric, we obtain a maximally isotropic
subbundle D from a graph in E+, E− of an pseudo-orthogonal operator O; just not all
such subbundles D can be characterized in this way. This is an important fact when we
want to cover, e.g., the G/G-model for non-compact semi-simple Lie groups.

Locally not any Dirac structure D admits a splitting σ such that D corresponds to
either a Poisson or a presymplectic structure. But even if it does so locally, there may be
global obstructions for it to be WZ-Poisson or WZ-presymplectic. This can be shown
by constructing characteristic classes associated to a given Dirac structure D ⊂ E [1].
An example for such a Dirac structure with “non-trivial winding” is the following one:6

Example 3. Take M = G a Lie group whose Lie algebra g = LieG is quadratic, with
the non-degenerate ad-invariant scalar product denoted by 〈·, ·〉.

Then the respective exact Courant algebroid E = T ∗G ⊕ TG can be cast into the
following form:

E = G × (g ⊕ g),

ρ(x, y) = xR ≡ xg,
〈(x, y), (x′, y′)〉 = 〈x, y′〉 + 〈x′, y〉,
(x, y) ◦ (x′, y′) = (−[x, x′], [x, x′] − [x, y′] + [x′, y]), ∀const. sections x, x′, y, y′

.

6 This example can be extracted directly from the previous section, cf. the text after formula (16)—we
only changed from a right-invariant basis to a left-invariant one.
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The cotangent bundleT ∗G is embedded as follows: θ → (0, θ∗g−1), where θ∗ is the vec-
tor field dual to the 1-form θ via the Killing metric on G which is left- and right-invariant.
Note that for any left or right invariant vector field ξ one has Lξ (θ)∗ = (Lξ θ)

∗.
It is easy to see that the curvature H of the splitting (connection) σ : ξ → (ξg−1, 0)

equals the Cartan 3-form

H(ξ1, ξ2, ξ3) = 〈ξ1g−1, [ξ2g−1, ξ3g−1]〉 ,
for ξi ∈ �(TG). The natural Dirac structure, considered in Sect. 2, is determined by
O = Adg. One can calculate the product of two section of this Dirac structure in the
representation defined above (here x, y are constant sections of G × g):

((1 − O)x, (1 + O)x) ◦ ((1 − O)y, (1 + O)y) = (−(1 − O)[x, y],−(1 + O)[x, y]) .

(32)

Certainly, closure on�(D) of the induced product or bracket requires some additional
property of the operator O, generalizing e.g. the Jacobi identity of the Poisson bivector
in Example 1.

Proposition 2. A Lagrangian subbundle, represented by an orthogonal operator O as
the set D = {(1 − O)ξ + ((1 + O)ξ)∗}, is a Dirac structure, iff the following property
holds, where ∇ denotes the Levi-Civita connection on M and ξi ∈ �(M, TM):
∑
σ∈Z3

g
(
O−1∇(1−O)ξσ(1) (O) ξσ(2) , ξσ(3)

)
= 1

2
H ((1−O)ξ1, (1−O)ξ2, (1−O)ξ3) .

(33)

Proof. First, we rewrite the multiplication law in terms of the Levi-Civita connection:

x1 ◦ x2 = ∇ρ(x1)x2 − ∇ρ(x2)x1 + 〈∇x1, x2〉 +H(ρ(x1), ρ(x2), ·) , (34)

where x, y ∈ E, ∇x is thought of as a 1-form taking values in E, and hence 〈∇x1, x2〉
is in �1(M) ⊂ E.

Let us take xi ∈ �(M,D), i = 1, 2, 3, written in the form

xi = (1 − O)ξi + ((1 + O)ξi)∗ . (35)

Note that ρ(xi) = (1−O)ξi . Using (34), we derive the product x1 ◦x2 and the 3-product
〈x1 ◦ x2, x3〉, which is a C∞(M)−linear form vanishing if and only if D is closed with
respect to the Courant multiplication,

x1 ◦ x2 = (1−O) (∇ρ(x1)ξ2 − ∇ρ(x2)ξ1
)+ (

(1+O) (∇ρ(x1)ξ2 − ∇ρ(x2)ξ1
))∗

+H(ρ(x1), ρ(x2), ·)− ∇ρ(x1)(O)ξ2 + ∇ρ(x2)(O)ξ1

+ (∇ρ(x1)(O)ξ2 − ∇ρ(x2)(O)ξ1
)∗ − 2g

(
O−1∇(O)ξ1, ξ2

)
. (36)

In the above we used that the Levi-Civita connection commutes with τ , i.e. ∇ξ (η∗) =(∇ξ η)∗.Apparently, the sum of the first and second terms in (36) belongs to the same max-
imally isotropic subbundle, therefore its product with x3 vanishes, and 〈x1 ◦ x2, x3〉 =
(I )+ (II )+ (III ), where

(I ) = 〈−∇ρ(x1)(O)ξ2 + (∇ρ(x1)(O)ξ2
)∗
, (1−O)ξ3 + ((1+O)ξ3)

∗〉 − (1↔2)

= g
(−∇ρ(x1)(O)ξ2, (1+O)ξ3

)+ g
(∇ρ(x1)(O)ξ2, (1−O)ξ3

)− (1↔2)

= −2g
(
O−1∇ρ(x1)(O)ξ2 + O−1∇ρ(x2)(O)ξ3, ξ1

)
,
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and

(II ) = 〈−2g
(
O−1∇(O)ξ1, ξ2

)
, x3〉 = −2g

(
O−1∇ρ(x3)(O)ξ1, ξ2

)
,

(I II ) = H
(
(1 − O)ξσ(1), (1 − O)ξσ(2), (1 − O)ξσ(3)

)
.

In the formulas above (1 ↔ 2) denotes the permutation of the first two indices and Z3
is the group of cyclic permutations of order 3. We also used that the orthogonality of
O implies that O−1∇(O) is a skew-symmetric operator with respect to the metric g,
i.e. g(O−1∇(O)η1, η2) = −g(O−1∇(O)η2, η1) holds for any couple of vector fields
η1, η2. All in all we then obtain

〈x1 ◦ x2, x3〉 = −2
∑
σ∈Z3

g
(
O−1∇(1−O)ξσ(1) (O), ξσ(2), ξσ(3)

)

+H ((1 − O)ξ1, (1 − O)ξ2, (1 − O)ξ3) , (37)

which implies (33). ��
From the above proof we extract the following useful

Corollary 1. Assume that the integrability condition (33) holds and that xi ∈ �(D),
parameterized as in (35). Then their Courant product (36) can be written as

x1 ◦ x2 = (1 − O)Q(ξ1, ξ2)+ ((1 + O)Q(ξ1, ξ2))
∗ , (38)

where

Q(ξ1, ξ2)=∇ρ(x1)ξ2−∇ρ(x2)ξ1+
(
g
(
ξ1,O−1∇(O)ξ2

))∗+ 1

2
H (ρ(x1), ρ(x2), ·)∗ ,

(39)

and ρ(xi) ≡ (1−O)ξi .
At the expense of introducing an auxiliary metric g on M , a Dirac structure can be

described globally by O ∈ �(O(TM)). The introduction of O permits also to identify
D with TM (via Eq. (35)). The Courant bracket thus induces a Lie algebroid bracket
on D. This in turn induces an unorthodox Lie algebroid structure on TM , where the
bracket between two vector fields ξ , ξ ′ is given by [ξ, ξ ′] := Q(ξ, ξ ′), which defines a
Lie algebroid structure on F := TM with anchor ρ : F → TM , ξ → (1 − O)ξ . In a
holonomic frame, the corresponding structure functions, [∂i, ∂j ]F = Ckij ∂k , are easily
computed as

Ckij = (1−O)mi�kmj − (i↔j)+ Om
j
;kOmi + 1

2
Hmn

k(1−O)mi (1−O)nj . (40)

For practical purposes it may be useful to know how the orthogonal operator O
transforms when changing g:

Proposition 3. Given a fixed splitting so that E = T ∗M ⊕ TM , the couples (g,O)
and (g, Õ) describe the same Dirac structure D on M iff

Õ =
[
O − 1 + g̃−1g(1 + O)

] [
1 − O + g̃−1g(1 + O)

]−1
. (41)
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Proof. An arbitrary element ω⊕ v inD can be parameterized as g(1 +O)ξ ⊕ (1 −O)ξ
for some ξ ∈ TM . Equating this to g̃(1 + Õ)̃ξ ⊕ (1 − Õ)̃ξ , it is elementary to derive
ξ̃ = 1

2

[
1 − O + g̃−1g(1 + O)] ξ . Since both of these two parameterizations are one-

to-one (see Proposition 1), the dependence above is invertible. Using this relation in
equating (1 − O)ξ to (1 − Õ)̃ξ for all ξ , we prove the statement of the proposition. ��

As a simple corollary one obtains the following

Lemma 1. For any orthogonal operator O and positive or negative symmetric operator
b, the operator 1 − O + b(1 + O) is invertible.

Both assumptions in the lemma refer to a definite metric (as this was assumed and nec-
essary for an exhaustive description of Dirac structures—cf. the discussion following
Proposition 1). For later use we conclude from this

Corollary 2. The operator

Tα := 1 + O + α(1 − O)∗ (42)

on T ∗� ⊗ X∗TM is invertible. Here ∗ is the Hodge operator on T ∗�; for Lorentz-
ian signatures of h, ∗2 = id and, by assumption, α ∈ R\0, for Euclidean signatures,
∗2 = −id and iα ∈ R\0.

The statement above follows in an obvious way from Lemma 1, i.e. for definite metrics g.
For pseudo-Riemannian metrics g, however, it in general becomes necessary to restrict
α to a neighborhood of α = 1 and α = i for Lorentzian and Euclidean signature of h,
respectively.

4. Change of Splitting

The action SDSM of the Dirac Sigma Model consists of two parts, the topological term
(17) and the kinetic one (18). It was mentioned repeatedly that only the second contri-
bution depends on the auxiliary metrics g and h. However, also the first part Stop (and
in fact now only this part) depends on another auxiliary structure, namely the choice of
the splitting. We will show in the present section that this dependence is rather mild: It
can be compensated by a coordinate transformation on the field space, which is trivial
on the classical solutions (cf. Proposition 5 below; the transformation is α-dependent,
so it changes if also the kinetic term is taken into account).

There is also an interesting alternative: Recall that h−1 ⊗ X∗g was used as a sym-
metric pairing in �(T ∗� ⊗X∗TM) to define Skin. If in addition we are given a 2-form
C on M , we can also use h−1(vol�)⊗X∗C for a symmetric pairing, where vol� is the
volume 2-form on � induced by h, and h−1(vol�) denotes the corresponding bivector
resulting from raising indices by means of h. Using the sum of both (or, more precisely,
an α-dependent linear combination of them) to define Skin, cf. Eq. (44) below, a change
of splitting can be compensated by a simple change of the new background field C.

From Sect. 3 one knows that a splitting in an exact Courant algebroid is governed by
2-forms B. Namely, assume that σ : TM → E is a splitting, then any other one sends
a vector field ξ to σB(ξ) := σ(ξ)+ B(ξ, ·).
Proposition 4. The DSM action transforms under a change of splitting σ → σB accord-
ing to:

SDSM → S̃DSM := SDSM + 1

2

∫

�

Bij f
i ∧ f j , (43)
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where f i ≡ dXi − V i .

Proof. In fact, the decomposition A = A+V is not unique and depends on the splitting.
Changing the splitting by a 2-form B, we get a different decomposition: A = Ã + V ,
where Ã = A− B(V, ·). To argue for this we note that V = σ (ρ(A)) is indeed invari-
ant (in particular, Skin is invariant), only A varies, hence after the change of splitting
we obtain Ã = A − σB (ρ(A)) = A − B(V, ·). Taking into account that the B-field
influences H , H → H̃ = H + dB, we calculate:

S̃top =
∫

�

Ãi ∧ dXi − 1

2
Ãi ∧ V i +

∫

N3

H̃

= Stop + 1

2

∫

�

B(dX ∧, dX)− 2B(V ∧, dX)+ B(V ∧, V ) ,

which finally gives the required derivation (43). ��
As mentioned above, if the kinetic term Skin (8) is replaced by

Snew
kin := 1

2

∫
�

α g(f ∧, ∗f )+ C(f ∧, f ) (44)

for some auxiliaryC∈�2(M), then a change of splitting governed by theB-field merely
leads to C → C − B for this new background field.

Note that despite the fact that H and C change in a similar way w.r.t. a change of
splitting,H → H + dB, C → C−B, they enter the sigma model qualitatively in quite
a different way: H is already uniquely given by the Courant algebroid and a chosen
splitting, while C is on the same footing as g or h, which have to be chosen in addition.
In what follows we will show that a change of splitting does not necessarily lead to a
change in the background fields, but instead can also be compensated by a transformation
of the field variables—at least infinitesimally.

Proposition 5. Let α �= 0 and B be a “sufficiently small” 2-form. Then there exists a
change of variables ā := a+ δa such that SDSM[X, ā] ≡ SDSM[X, a]+ 1

2

∫
�
B(f ∧, f ).

Clearly, δa needs to vanish for f = 0. We remark that this equation is one of the field
equations, cf. Theorem 1 below, so that δa corresponds to an on-shell-trivial coordinate
transformation (on field space).

Proof. We find that after the change of variables ā := a + δa one has

SDSM[X, ā] − SDSM[X, a] =
∫

�

g(Tα δa ∧, f )+ 1

2
g(δa ∧, Rα δa) , (45)

where Tα is given by Eq. (42) and

Rα = O − O−1 + α(2 − O − O−1)∗ . (46)

Solving the equation SDSM[X, ā] − SDSM[X, a] = 1
2

∫
�
B(f ∧, f ), we use the ansatz

δa = T −1
α Lf for some yet undetermined L ∈ �(�,End(T ∗�⊗X∗TM)) (invertibility

of Tα follows from Corollary 2). This yields the following equation for L:

L∗AL+ L∗ − L+ B = 0 , (47)
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where A = T −1∗
α R∗

αT
−1
α and B denotes the operator via the identification B(a ∧, b) =

g(Ba ∧, b), i.e. the operator is obtained from the bilinear form by raising the second
index. In the above the adjointL∗ of an operatorL in T ∗�⊗X∗TM is defined by means
of the canonical pairing induced by g: g(a ∧, Lb) = g(L∗a ∧, b).7 For sufficiently small
B, the above operator (or matrix) equation (47) has the following solution:

L =
( ∞∑
n=0

( 1
2

n+ 1

)
(BA)n

)
B , (48)

where
(
λ
n

) ≡ λ(λ−1)...(λ−n+1)
n! . Note that the L above is anti-selfadjoint (antisymmetric),

L∗ = −L, so it solves the simplified equation LAL + 2L − B = 0. For the case that
A has an inverse, the above solution can also be rewritten in the more transparent form
L = A−1

(√
1 + AB − 1

)
. Since A can be seen to be bounded, the sum (48) converges

for small enough B. ��
For completeness we also display how O transforms under a change of splitting:

Proposition 6. Given two splittings σ, σ̃ of the exact Courant algebroid E, the couples
(σ,O) and (̃σ , Õ) describe the same Dirac structure D on M , iff

Õ = (2O − B(1 − O)) (2 − B(1 − O))−1 , (49)

where B is defined as follows: σ̃ (ξ) = σ(ξ)+ (Bξ)∗ for any vector field ξ .

Proof. Straightforward calculations similar to Proposition 3. ��

5. Field Equations and Gauge Symmetries

In this section we compute the equations of motion of the Dirac sigma model (DSM)
introduced in Sect. 2 and reinterpret them mathematically. In particular we will show
that the collection (X,A) of the fields of the DSM are solutions to the field equations if
and only if they correspond to a morphism from T� to the Dirac structure D, viewed
as Lie algebroids. As a consequence they are also independent of the choice of metrics
used to define the kinetic term Skin of the model as well as of the splitting used to define
Stop.

Definition 1 ([23, 5]). A vector bundle morphism φ : E1 → E2 between two Lie algeb-
roids with the anchor maps ρi : Ei → TMi is a morphism of Lie algebroids, iff the
induced map � : �(�E∗

2 ) → �(�E∗
1 ) is a chain map with respect to the canonical

differentials di:

d1�−�d2 = 0 . (50)

7 For operators commuting with the Hodge dual operation ∗ (which applies to all operators appearing
here), this coincides with the adjoint defined by the symmetric pairing induced by g and h: g(a∧, ∗Lb) =
g(L∗a ∧, ∗b). One may then verify e.g. R∗

α = −Rα , ∗∗ = −∗, A∗ = −A, and T ∗
α = O−1Tα . This

notation is not to be confused with the isomorphism between TM and T ∗M , extended to an involution
τ : TM ⊕ T ∗M , denoted by the same symbol, cf. Eq. (31).
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First, notice that, fixing a base map X : M1 → M2, any vector bundle morphism is
uniquely determined by a section a ∈ �(M1, E

∗
1 ⊗X∗E2). Hence the morphism prop-

erty (50) should have a reformulation in terms of the couple (X, a). Second, it is easy to
see that the property (50) is purely local, therefore it admits a description for any local
frame.

Indeed, let {ei} be a local frame of the vector bundle E2, {ei} be its dual, and ai :=
�(ei), then (50) is equivalent to the following system of equations:

d1X − ρ2(a) = 0, (51)

d1a
k + 1

2
Ckij a

i ∧ aj = 0. (52)

The first equation is covariant; it implies that the following commutative diagram holds
true:

E1
φ−→ E2

ρ1 ↓ ρ2 ↓
TM1

X∗−→ TM2

The second equation depends on the choice of frame. However, the additional contribu-
tion, which arises in (52) under a change of frame, is proportional to the d1X − ρ2(a),
hence it is of no effect, if Eq. (51) holds. For further details about this definition we refer
to [5].

In our contextE1 = T� and thus d1 becomes the ordinary de Rham differential. The
a above becomes A ∈ �1(�,X∗D), but can be identified with a due to

A ≡ A+ V = ((1 + O)a)∗ + (1 − O)a , (53)

where a ∈ �1(�,X∗TM) is an unrestricted field. In these variables SDSM has the form
(25). The first morphism property, Eq. (51), then takes the form f ≡ dX − V = 0.

Theorem 1. Let α �= 0 (depending on the signatures of h and g, possibly further re-
stricted as specified after Eq. (24) or at the end of Sect. 3). Then the field equations of
SDSM have the form

f ≡ dX − (1 − O)a = 0 , (54)

�(a)+ 1

2
g
(
a ∧, O−1∇(O)a

)∗ + 1

4
H((1 − O)a ∧, (1 − O)a, ·)∗ = 0 , (55)

or, in the dependent (A, V ) variables, dX = V and

�A+ 1

4
g
(
V ∧, O−1∇(O)V

)
+ 1

4
〈A ∧, O−1∇(O)A∗〉 + 1

2
H(V ∧, V ∧, ·) = 0 . (56)

The fields (X,A) are a solution of the equations of motion, if and only if they induce a
Lie algebroid morphism from T� to D.

Corollary. The classical solutions of the DSM do not depend on the choice of the cou-
pling constant α �= 0 (in the permitted domain), or, more generally, on the choice of
metrics g and h.
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Proof. Using that O is an orthogonal operator w.r.t. g, one computes in a straightforward
generalization of (12) and (13)8

O
(
δSDSM

δa

)∗
= (1 + O + α(1 − O)∗) f . (57)

The term in the brackets is the operator (42), which, according to our assumption on α, is
invertible; so, indeed f = 0. Note, however, that in general 1+O is invertible only if the
Dirac structure corresponds to a graph of a bivector. Thus, only in the WZ-Poisson case
one may drop the kinetic term altogether if one wants to keep the morphism property of
the field equations.

We now turn to the X-variation of SDSM. This is conceptually more subtle since
a ∈ �1(�,X∗TM) depends implicitly on X as well. Thus to determine δXa we need a
connection, since, heuristically, we are comparing sections in two different, but nearby
bundles X∗

0TM and (X0 + δX)∗TM . (If we required e.g. δXai = 0, then this would
single out a particular holonomic frame, since a change of coordinates on M yields
ãi = Mi

j (X)a
j . In the following we develop an inherently covariant formalism that also

produces covariant field equations.)
Let us denote the local basis in X∗TM dual to dXi in X∗T ∗M by ∂i . The notation

dXi is used so as to distinguish it from d acting on the pull-back function X∗Xi , which
we denote as usual by dXi . Then

δX∂i = �
j
kiδX

k∂j , (58)

where �ijk are coefficients of the Levi Civita connection ∇ of g. Also, we think of

ai to depend on both X(x) and x (cf. also [5] for further details); correspondingly,

δXa =
(
δX(ai ) + �ikj a

j δXk
)
∂i . Note that certainly δXd = dδX, where d denotes the

de Rham operator. However, this does not apply for dX used above, which is the section
in T ∗� ⊗X∗TM corresponding to the bundle map X∗ : T� → TM , dX = dXi ⊗ ∂i ;
so in dX, d does not denote an operator. Here one finds in analogy to δXa,

δX(dX) =
(

d(δXi)+ �ikjdXjδXk
)
∂i = �(δX) , (59)

where � is the pull-back of the Levi-Civita connection ∇ to X∗(TM) and in the last
step torsion freeness of ∇, �ikj = �ijk , was used. The above covariant form of the
variation (58) implies in particular that δXg = 0, when g is viewed as an element in
�(�,X∗T ∗M⊗2)—as it appears in the action functional (24), so we will be permitted
to use δXg(a∧, b) = g(δXa∧, b)+ g(a∧, δXb) below.

With the above machinery at hand, the variation w.r.t. X is rather straightforward
again. By construction it will produce a covariant form of the respective field equations.
Since we already know that f = 0 holds true, moreover, we will be permitted to drop all
terms below which are proportional to f . Correspondingly, Skin can be dropped for the

8 Recall that a = −a and O = Adg in the G/G model. The variational derivative is defined according

to δaSDSM = ∫
�〈δa ∧, δSDSM

δa 〉 ≡ ∫
� g

(
δa ∧,

(
δSDSM
δa

)∗)
. Alternatively, one may infer this relation

also from Eq. (45), keeping only the terms quadratic in δa: since g(Tα δa ∧, f ) = g(δa ∧, O−1Tαf ),
cf. footnote.
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calculation of δXSDSM = 0, since Skin is quadratic in f . By convention, we will denote
equalities up to f = 0 in what follows by ≈; so, in particular

δSDSM

δX
≈ δStop

δX
. (60)

Also, we may drop all terms containing δXa, since on behalf of (57), they will be pro-
portional to f again, with or without the kinetic term included (corresponding only to
α �= 0 and α = 0, respectively, in formula (57)). Thus,

δXStop ≈
∫

�

g
(
(δXO)a ∧, dX

)+ g
(
(1 + O)a ∧, �δX)

+g
(
a ∧, (δXO)a)+ 1

2
Hijk dXi ∧ dXj δXk , (61)

where we already made use of Eq. (59). In the second term we perform a partial inte-
gration (dropping eventual boundary terms) and observe that

� ((1 + O)a) ≈ 2�a , (62)

which follows from 2a ≈ (1 + O)a + dX and �(dX) = −dXi ∧ dXj �kji ⊗ ∂k ≡ 0.
Replacing dX by a − Oa in the first term, we then obtain

δXStop ≈
∫

�

g
(
a ∧, (O−1δXO)a

)
+ g

(
2�a ∧, δX

)+ 1

2
Hijk dXi ∧ dXj δXk , (63)

where the first and the third term in (61) combined into the first term above. This proves
Eq. (55). Equivalence with Eq. (56) is established easily as follows: For the first term we
read Eq. (62) from right to left and use A∗ = (1 + O)a. For the second term of (55) we
replace a by 1

2 (A
∗ +V ) and utilize the antisymmetry of O−1∇O to cancel off-diagonal

terms. For the third one we use V = (1 − O)a.
This leaves us with proving the equivalence of (55) to the second morphism property

(52), specialized to the present setting, where, again, f = 0 may be used freely. So, we
need to show that (55) can be replaced by dai + 1

2C
i
jka

j ∧ ak ≈ 0, where the structure

functions are given by Eq. (40). Since Cijka
j ∧ ak ⊗ ∂i ≡ Q(∂j , ∂k) aj ∧ ak , most of

the terms in (55) are identified easily, and it only remains to show that

�a ≡
(

dai + �ijkdX
j ∧ ak

)
⊗ ∂i ≈

(
dai + aj∧ak(1−O)mj�imk

)
⊗ ∂i , (64)

which is an obvious identity. ��
Having established that the field equations enforce a Lie algebroid morphism T� →

D, it is natural to expect that on solutions the gauge symmetries correspond to a ho-
motopy of such morphisms [5]. This is indeed the case. For the gauge invariance of an
action functional, however, an off-shell (and preferably global) definition of the sym-
metries is needed. This is a more subtle question. A derivation of the gauge symmetries,
including a specialization to known examples, requires some more extended discussion
for a sufficiently clear presentation. Moreover, the discussion fits into a more general
framework, following the considerations in [5], and thus will be presented elsewhere
[20]. In the present paper we only provide the result of such an analysis:9

9 Note, however, that e.g. the fact that the model contains no propagating degrees of freedom (is
“topological”) follows also from the self-contained Hamiltonian analysis in the subsequent section.
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Proposition 7. For nonvanishing α the infinitesimal gauge symmetries of SDSM can be
expressed in the following form

δεX = (1 − O)ε , (65)

δεa = �(ε)− g
(
O−1∇(O)a, ε

)∗ + 1

2
H((1 − O)a, (1 − O)ε, ·)∗

+ T −1
α

(
1

2
H(f, (1 − O)ε, ·)∗ + (1 − α∗)∇f (O)ε +Mf

)
, (66)

where ε ∈ �(�,X∗TM) and M = M∗ ∈ �(End(T ∗� ⊗ X∗TM)) may be chosen
freely.

The operator M above parametrizes trivial gauge symmetries. In the G/G and in the
Poisson case the above symmetries reproduce the known ones for α = 1 and α = 0,
respectively. In general, however, the inverse of Tα is defined only for nonvanishing α,
cf. Corollary 2.

6. Hamiltonian Formulation

In this section we derive the constraints of the DSM. For simplicity we restrict ourselves
to closed strings, � ∼= S1 × R 	 (σ, τ ). Here σ ∼ σ + 2π is the “spatial” variable
around the circle S1 (along the closed string) and τ is the “time” variable governing the
Hamiltonian evolution.

The discussion will be carried out for more general actions in fact: We may regard
any action of the form of SDSM, where D is required to be a maximally isotropic (but
possibly non-involutive) subbundle of E; in other words for the present purpose we
will consider any action of the form (24) for any orthogonal (X-dependent) matrix Oi

j .
Generalizing an old fact for PSMs [25], the corresponding constraints are “first class”
(define a coisotropic submanifold in the phase space), iff D is a Dirac structure (i.e. iff
the matrices Oi

j satisfy the integrability conditions (23) found above).
Let ∂ denote the derivative with respect to σ (the τ -derivative will be denoted by an

overdot below) and let δ be the exterior differential on phase space. Then we have

Theorem 2. For α �= 0 and � ∼= S1 × R, the phase space of SDSM , D maximally
isotropic in E = T ∗M ⊕ TM , may be identified with the cotangent bundle to the loop
space in M with the symplectic form twisted by the closed 3-form H ,

� =
∮
S1
δXi(σ ) ∧ δpi(σ )dσ − 1

2

∮
S1
Hijk(X(σ)) ∂X

i(σ ) δXj (σ ) ∧ δXk(σ ) dσ ,
(67)

subject to the constraint Jω,v(σ ) = vi(σ,X(σ))pi(σ )+ ωi(σ,X(σ))∂X
i(σ ) = 0 , for

any choice of ω ⊕ v ∈ C∞(S1) ⊗ �(X∗D), or, in the description of D by means of
O ∈ �(O(TM)),

J ≡ (O + 1)∂X + (O − 1)p = 0 . (68)

The constraints are of the first class, if and only if D is a Dirac structure.
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For Dirac structuresD that may be written as the graph of a bivector P (for the splitting
chosen—cf. Proposition 1 and Example 1), 1 + O is invertible; then obviously (68) can
be rewritten as ∂X − Pp = 0 or ∂Xi + P ijpj = 0 (cf. Eq. (22) and the text about
notation following this equation!), which agrees with the well-known expression of the
constraints in the WZ-Poisson sigma model [16].

Proof. To derive the Hamiltonian structure we follow the shortcut version of Diracs
procedure advocated in [9]. For simplicity we first drop the WZ-term, manipulating∫
�

Ldσ ∧dτ := SDSM −∫
N3
H in a first step. With dx− ∧dx+ = −2dσ ∧dτ we obtain

from SDSM by a straightforward calculation

L[X,A±] = −α
2
Ẋ2 + 1

2 (A+ + αV+ − A− + αV−)Ẋ

+α
2
∂X2 + 1

2 (−A+ − αV+ − A− + αV−)∂X

− 1
2V−(A+ + αV+)+ 1

4
(A+V− + A−V+) , (69)

where appropriate target index contraction is understood [canonically, V , Ẋ, and ∂X
carry an upper target-index, and A± (as well as p introduced below) a lower one; but
all indices may be raised and lowered by means of the target metric g]. For what con-
cerns the determination of momenta, α �= 0 is qualitatively quite different from α = 0.
Restricting to the first case for the proof of the present theorem, we may now employ
the following substitution to introduce a new momentum field p:

−α
2
Ẋ2 + βẊ →∼ pẊ + 1

2α
(p − β)2 , (70)

which results from −α
2 Ẋ

2 →∼ pẊ + 1
2αp

2 after shifting p to p − β. Within an action
functional any such two expressions—for arbitrary C-numbers α �= 0 and possibly field
dependent functions β—are equivalent, classically (eliminate p by its field equations)
or on the quantum level (Gaussian path integration over p). Applying this to the first
line in (69) with β = 1

2 (A+ + αV+ −A− + αV−) and noting that the last bracket in the
third line vanishes due to A± ∈ D and the isotropy condition posed on D, we obtain
L →∼ LHam with

LHam[X,A±, p] = pẊ + 1

2α

(
p − 1

2A+ − 1
2αV+ + 1

2A− − 1
2αV−

)2

+α
2
∂X2 + 1

2 (−A+ − αV+ − A− + αV−)∂X

− 1
2V−(A+ + αV+) . (71)

It is straightforward to check that the above terms can be reassembled such that

LHam[X,A±, p] = pẊ − V−p − A−∂X

+ 1

8α

[
A+ + αV+ − (A− + αV−)− 2(p + α∂X)

]2
− 1

2A−V− − p∂X . (72)

We now want to show that the last two lines may be dropped in this expression. Here we
have to be careful to take into account thatA and V are in general not independent fields,
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but subject to the restriction that their collection A = A⊕V lies in the isotropic subbun-
dle D. First we note that A−V− ≡ 1

2 〈A−,A−〉 = 0 due to A− ∈ D. Next, with a shift
A+ → Ã+ := A+ + A−, the A−-part drops out in the second line; this is particularly
obvious in terms of independent fields a±, where the term in the square brackets takes
the form [(1 + O)+ α(1 − O)] (a+ − a−) − 2(p + α∂X). After this shift, A− enters
the action only linearly anymore, and thus plays the role of a Lagrange multiplier. This
already shows the appearance of the constraints Jω,v = 0. Parameterizing ω ⊕ v ∈ D

as (1 + O)λ⊕ (1 − O)λ, one obtains Jω,v = g(Oλ, (O + 1)∂X + (O − 1)p), g being
the Riemann metric, which vanishes for any λ (an unconstrained Lagrange multiplier
field), iff (68) holds true.

To show that the remaining dependence of the lower two lines in (72) on p⊕∂X ∈ E
can be eliminated (by a further shift in the fields), is seen most easily in a path-integral
type of argument10: Integrating over A− (i.e. taking the path integral over λ), one obtains
a delta function that constrains p⊕ ∂X to lie in the Dirac structureD; correspondingly,
the term p∂X gives no contribution since D is isotropic, and −2(p + α∂X) can be
absorbed into Ã+ + αṼ+ by a further redefinition of Ã+ into Ā+. After these manip-
ulations the last two lines reduce to 1

8α ([(1 + O)+ α(1 − O)] ā+)2. This is the only
dependence of the resulting action on ā+, which thus may be put to zero as well.11

There also exists an argument on the purely classical level for the above consider-
ation: Denote p ⊕ ∂X, taking values in E, by ψ , and A− and Ã+ ≡ A+ + A− by
λD and µD , respectively (the index D so as to stress the restriction to the subbundle
D < E). Then LHam = LHam[X,p, λD,µD] = pẊ−〈λD,ψ〉+f1(µD−ψ)+f2(ψ),
where f1 and f2 are polynomial functions to be read off from (72) and, as always, 〈·, ·〉
denotes the fiber metric in E. Next we observe that τ(D) = {(v; −Ov)} ∼= D∗ has a
trivial intersection with D = {(v; Ov)} and E = D ⊕ τ(D); note that τ(D) is also
isotropic by construction, but in general will not be a Dirac structure (cf. Eq. (33));
as indicated already by the notation, it can be identified with the dual D∗ of D by
means of 〈·, ·〉. Thus ψ can be decomposed uniquely into components ψD ∈ D and
ψ∗
D ∈ D∗, ψ = ψD + ψ∗

D . With µ̃D := µD − ψD the action takes the form LHam =
pẊ−〈λD,ψ∗

D〉+f1(µ̃D −ψ∗
D)+f2(ψ), since for vanishingψ∗

D the last two contribu-
tions reduce to f1(µ̃D). As a consequence there exists F(ψ, µ̃D) with values in E such
that f1(µ̃D −ψ∗

D)+ f2(ψ) = 〈F,ψ∗
D〉. With F = FD + F ∗

D and due to the isotropy of
D∗ we then obtain LHam = LHam(X, p,µD, λ̃D) = pẊ− 〈̃λD,ψ∗

D〉 + f1(µ̃D), where
λ̃D := λD − FD has been introduced and f1 is a quadratic function in its argument. As
before we thus may drop f1(µ̃D) (cf. also footnote 11), obtaining

LHam = LHam[X,p,A+,A−] →∼ LHam[X,p, λ̃] = pẊ − g(̃λ, J ) (73)

for some unconstrained Lagrange multiplier field λ̃ ∈ TM .

10 A purely Lagrangian argument will be provided in the subsequent paragraph.
11 Note that on behalf of the permitted values for α the matrix α + 1 + (α − 1)O is

non-degenerate—due to Lemma 1 or Corollary 2. So the above statement follows from the field equations
of ā+, and using ā+ = 0 in the action is a permitted step in the procedure of [9]. However, even if g
has indefinite signature and α �= 0 is chosen such that the above quadratic form for ā+ is degenerate,
this contribution can be dropped, since then the action does not depend on directions of ā+ in the kernel
of the matrix, so they also give no contribution to the action (alternatively, ā+ = 0 may be viewed as
a gauge fixation for those directions then). We remark parenthetically that the rank of the matrix may
depend on X ∈ M in this case, but dropping the contribution to the action in question obviously is the
right step.



478 A. Kotov, P. Schaller, T. Strobl

Noting that the addition of the Wess-Zumino term only contributes to the symplectic
form as specified in (67), we thus proved the main part of the theorem.

The statement about the first class property follows from specializing the results of
[2], where a Hamiltonian system with symplectic form (67) and currents Jω,v for an
arbitrary subset of elements ω ⊕ v ∈ E was considered. ��

The constraint algebra of Jω,v = 0 in the above theorem is an example of the more
general current algebra corresponding to an exact Courant algebroid E found in [2]—
the first class property is tantamount to requiring a closed constraint or current algebra
without anomalies. On the other hand, apparently the action SDSM provides a covariant
action functional that produces the above mentioned currents (as constraints or symme-
try generators) for the case of an arbitrary Dirac structure. As shown above this is even
true if D is maximally isotropic but possibly not a Dirac structure. It is an interesting
open problem to consider the Hamiltonian structure of the action (20) for a non-isotro-
pic choice of D (does the more general statement hold true that the functional SDSM
defines a topological theory iffD ⊂ E is a Dirac structure?) or likewise to provide some
other covariant action functional producing constraints of the form considered in [2] for
arbitrary D < E.

We already observed above that the discussion of the Hamiltonian structure changes
(and in fact becomes somewhat more intricate) for the case of vanishing coupling con-
stant α. E.g. substitutions such as in Eq. (70) are illegitimate in this limit. Moreover, as
observed already in previous sections of the paper, the kinetic term Skin is even necessary
in general to guarantee the morphism property of the field equations (it becomes super-
fluous only when D is the graph of a bivector); in fact, the number of independent field
equations may even change from α �= 0 to α = 0 (with the extreme case of D = TM ,
where for α = 0 one obtains no equations at all). Thus it is comforting to find

Theorem 3. For α = 0 and � ∼= S1 × R, the Hamiltonian structure of SDSM , D < E

maximally isotropic, may be identified with the one found in Theorem 2 above.

Proof. For a first orientation we check the statement for D = TM (and H = 0): Then
SDSM ≡ 0. The vanishing action S (depending on whatsoever fields) is obviously equiv-
alent (as a Hamiltonian system) to an action S̄[X,p, λ] = ∮

(pẊ − λp) (multiplication
of the integrand by dσ ∧ dτ here and below is understood). Since this example of D
corresponds to O = −1, this latter formulation obviously agrees with what one finds
in Theorem 2 for this particular case. This case already illustrates that a transition from
S ≡ 0 to S̄ depending on additional fields as written above is an important step in
establishing the equivalence.

We now turn to the general case, putting H to zero in a first step as in the proof
of Theorem 2. Thus we need to analyse S0[X,A] = ∫

�
Ai ∧ dXi − 1

2Ai ∧ V i , with
A = A⊕V taking values inD. Using the unconstrained field a ≡ a0dτ +a1dσ of (53),
one finds

S̄0[X,p, a0, a1, λ] =
∮ (

pẊ − g(λ, p − (1 + O)a1)

−g(a0, (1 + O−1)∂X + (O − O−1)a1)
)
. (74)

Here the third term just collects all terms proportional to a0 of S0, as one may show by
a straightforward calculation (using the orthogonality of O). The first two terms result
from

∮
g((1+O)a1, Ẋ), the only appearance of τ -derivatives in S0. The transition from

S0 to S̄0 is the obvious generalization of the analogous step from S ≡ 0 to S̄ mentioned
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above and explains the appearance of the new fields p and λ; eliminating these fields
one obviously gets back S0. Next we shift λ according to λ = λ̄+ (1−O)a0. This yields

S̄0[X,p, a0, a1, λ̄] =
∮ (

pẊ − g(λ̄, p − (1 + O)a1)

−g(a0, (1 + O−1)∂X + (1 − O−1)p)
)
. (75)

Note that the last term is already of the form −g(a0,O−1J ), with J given by Eq. (68).
We now will argue that the second term, containing the fields a1 and λ̄, can be dropped.
For the case that 1 + O is invertible, this is immediate since then the quadratic form
for λ̄ and a1 in (75) is nondegenerate—λ̄ and a1 become completely determined by
the remaining fields, without constraining them (cf. also [9]). Otherwise the variation
w.r.t. a1 constrains the momentum p, but this constraint is fulfilled automatically by
J = 0, resulting from the variation w.r.t. a0. To turn the last argument into an honest
off-shell argument, we perform another shift of variables: With a0 := O−1̃λ− 1

2λ and
a1 := ā1 + 1

2O−1(p − ∂X), Eq. (75) becomes

S̄0[X,p, λ̃, ā1, λ̄] =
∮ (

pẊ − g(̃λ, J )+ g(λ̄, (1 + O)ā1)
)
. (76)

Now it is completely obvious that the last term, the only appearance of λ̄ and ā1, can be
dropped. This concludes our proof, since the remaining integrand agrees with LHam in
(73). ��

As a rather immediate but important consequence the above results imply

Theorem 4. The reduced phase space of SDSM (for � = S1 × R and D any maximally
isotropic D < E) does not depend on the choice of α ∈ R, the metrics h and g on �
andM , respectively, or the splitting σ : TM → E. It only depends on the subbundleD.

Proof. Independence of α follows from the above two theorems. Independence of h
is obvious and likewise the one of g when the constraints are written as Jω,v(σ ) =
0, ∀ω ⊕ v ∈ D, cf. Theorem 2 above. Independence on the choice of the splitting is
not so obvious at first sight: the symplectic form (67) depends onH (and not only on its
cohomology class), and so implicitly on the splitting, cf. Eq. (28); but likewise do the
constraint functions Jω,v(σ ) = ωi ∂X

i + vipi , since the presentation of an element of
D < E as ω⊕v ∈ T ∗M⊕TM assumes an embedding of TM intoE (while T ∗M < E

can be identified canonically as the kernel of ρ∗, cf. Eq. (27) as well as our discussion
in Sect. 4 above). The coordinate transformation on phase space pi → pi + Bij ∂X

j

establishes the isomorphism between the two Hamiltonian structures corresponding to
different splittings (cf. also [2]). Alternatively we may infer splitting independence also
from Propositions 4 and 5 above. ��
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